q Computer System Overview

Chapter 1

$ Operating System

= Exploits the hardware resources of one
Or more processors

= Provides a set of services to system
users

= Manages secondary memory and I/0
devices

Basic Elements

Processor

Main Memory

= referred to as real memory or primary memory
= volatile

I/O modules

= secondary memory devices

= communications equipment

« terminals

System bus

= communication among processors, memory, and
I/O modules

Top-Level Components

CPU Main Memory

System . 1
MAR Bos

C

Instruction
Instruction
Instruction

MBR

1I/0 AR

Gl
H{BIERE

1I/0 BR

1/0 Module i n-2
-

PC

IR

MAR = T
MBR = Memory buffer register

VO AR = Inpuloutput address register
VO BR = Input/output buffer register

Bulfers

Figure 1.1 Computer Components: Top-Level View 4

§ Processor Registers

= User-visible registers
= Enable programmer to minimize main-

memory references by optimizing register

use
= Control and status registers

= Used by processor to control operating of

the processor

= Used by operating-system routines to
control the execution of programs

$ User-Visible Registers

= May be referenced by machine language

= Available to all programs - application
programs and system programs

= Types of registers
« Data

= Address
= Index
= Segment pointer
= Stack pointer

§ User-Visible Registers

= Address Registers

= Index

= involves adding an index to a base value to get an
address

= Segment pointer

= when memory is divided into segments, memory is
referenced by a segment and an offset

= Stack pointer
= points to top of stack

$ Control and Status Registers

= Program Counter (PC)
= Contains the address of an instruction to be
fetched
= Instruction Register (IR)
= Contains the instruction most recently fetched

= Program Status Word (PSW)
= condition codes
= Interrupt enable/disable
= Supervisor/user mode

$ Control and Status Registers

= Condition Codes or Flags
= Bits set by the processor hardware as a result of
operations
= Can be accessed by a program but not altered
= Examples
= positive result
= negative result

= ZEro
= Overflow

$ Instruction Cycle

Fetch Cycle Execute Cycle

< Fetch Next Execute
START ¥ t Instructh HALT

Figure 1.2 Basic Instruction Cycle

10

g Instruction Fetch and Execute

= The processor fetches the instruction
from memory

= Program counter (PC) holds address of
the instruction to be fetched next

= Program counter is incremented after
each fetch

11

$ Instruction Register

= Fetched instruction is placed in the instruction
register
= Types of instructions
= Processor-memory
« transfer data between processor and memory
= Processor-I/0O
« data transferred to or from a peripheral device
» Data processing
= arithmetic or logic operation on data
« Control
= alter sequence of execution

12

$ Example of Program Execution

Memory CPU Registers Memory CPU Registers

s
a0[1 9 4 0 3 0 ojrc 0[1 9 40 3 0 1|PC

3015 9 4 1| | |ac)3ol[5s o 4 1] 0 00 3]AC
229 4 1] 194 o3[z s+1] [9 40m
940[0 0.0 3 940[0 00 3
941[00 0 2 941[00 0 2

Step 1 Swep2
Memory CPU Registers Memory CPU Registers

30T 40 3o arc |3m[o 20 30 2|PC
301[5 9 4 1 [0 0 0 3lAC|301[5 9 4 1] C() 0 0 S]AC]
[

a[29 4 1] 594 1R |3z 93] S
940[0 0.0 3 940[0 0.0 3 342=5
9410002 941[00 0 2

Step 3 Swepd

Memory CPU Registers Memory CPU Registers

a0[1 9 40 3 02|rC 0[1 9 40 3 03|pPC

301§ 9 4 1] [00o05]ac]3ol[se 4 1] 0 00 S|AC
32[2 9 4 129 4 1| j3m2[29 4 1] | P)1
940[0 0.0 3 940[0 0.0 3
941[00 0 2 941[00 05

Step 5 Sep6

Figure 1.4 Example of Program Execution

(contents of memory and registers in hexadecimal) 13

$ Direct Memory Access (DMA)

= I/O exchanges occur directly with
memory

= Processor grants I/O module authority
to read from or write to memory

= Relieves the processor responsibility for
the exchange

= Processor is free to do other things

14

§ Interrupts

An interruption of the normal sequence of
execution

= Improves processing efficiency

= Allows the processor to execute other
instructions while an I/O operation is in
progress

= A suspension of a process caused by an event
external to that process and performed in
such a way that the process can be resumed

15

$ Classes of Interrupts

= Program
= arithmetic overflow
= division by zero
= execute illegal instruction
= reference outside user’s memory space
= Timer
= [/O
= Hardware failure

16

$ Interrupt Handler

= A program that determines nature of
the interrupt and performs whatever
actions are needed

= Control is transferred to this program
= Generally part of the operating system

17

$ Interrupt Cycle

Fetch Cycle Execute Cycle Interrupt Cycle

<
P ¥ .| FetchNext
‘ 7| Instruction

Check for
Interrupt;
nierrupts|process Interrupt|

Figure 1.7 Instruction Cycle with Interrupts

18

$ Interrupt Cycle

= Processor checks for interrupts

= If no interrupts fetch the next
instruction for the current program

= If an interrupt is pending, suspend
execution of the current program, and
execute the interrupt handler

19
User] Llser Lo User]
Proeram Program Program Program Program Program
T ! Ao T ' T -
LA e g (o] e
1 Fl I I
@ \ . @ £aLy : | @ = :
1 i - -
i fo To |7 e) _| e e T3]
" [£ & " - ! - 1 e TR e " 1
WRITE -, r" : I(wnmand WRITE "~ =" 7, Command WRITE -~ ,f ;‘ Command
— 1 = \ 1 r L} r i
1 ~ 1 1, 1
1 L .“‘:-.“' I @ fy .l' r:
: _.f L END @ £y fr
’ 2t 1 Iy rr
1 /
@ 1 o I: -:f:“ @ : "
[i~
1+ Ly Interrupt Lot Interrupt
1! ,’ @‘ LTI ~ . Handler : ,-J ,! Handler
[) [1 I -
S T — % ’ _ - [
by i s ! o S |
WRITE » WRITE ¢ . ! @ WRITE *~/_ ¢ | | @
_— _ PR = : o
. 1 N END i ;o END
@ . H /
]
Iy | ’f i
v ’
F 1 I
@ % ® |/
1 [
7
i @ T
. i il s
WRITE WRITE WRITE »

{a) Novinlerrupts

(b Interrupts: short KO wait

(c) Interrupts; long IO wait

Figure 1.5 Program Flow of Control Without and With Interrupts

10

§ Multiple Interrupts

User Program

= Disable interrupts
while an interrupt
is being processed

= ProCEssor ignores e
any new interrupt e
request signals 2

Multiple Interrupts:
$ Sequential Order

= Disable interrupts so processor can
complete task

= Interrupts remain pending until the
processor enables interrupts

= After interrupt handler routine
completes, the processor checks for
additional interrupts

22

11

§ Multiple Interrupts:Priorities

= Higher priority interrupts cause lower-
priority interrupts to wait

= Causes a lower-priority interrupt
handler to be interrupted

= Example when input arrives from
communication line, it needs to be
absorbed quickly to make room for
more input

23

$ Multiprogramming

= Processor has more than one program to
execute

= The sequence the programs are executed
depend on their relative priority and whether
they are waiting for I/O

= After an interrupt handler completes, control
may not return to the program that was
executing at the time of the interrupt

24

12

& Memory Hierarchy

Figure 1.14 The Memory Hierarchy

25

& Going Down the Hierarchy

= Decreasing cost per bit
= Increasing capacity
= Increasing access time

= Decreasing frequency of access of the
memory by the processor
= locality of reference

26

13

§ Disk Cache

= A portion of main memory used as a
buffer to temporarily to hold data for
the disk

= Disk writes are clustered

= Some data written out may be
referenced again. The data are
retrieved rapidly from the software
cache instead of slowly from disk

27

$ Cache Memory

= Invisible to operating system
= Increase the speed of memory

= Processor speed is faster than memory
speed

28

14

$ Cache Memory

Block Transfer

Word Transfer f\k-’ﬁ

CPU Cache I Main Memory \

Figure 1.16 Cache and Main Memory

29

$ Cache Memory

= Contains a portion of main memory
m Processor first checks cache

= If not found in cache, the block of
memory containing the needed
information is moved to the cache

30

15

Line Memory

Number Tag Block address
0 0
| 1
2 2 Block
. 3 (K words)
C-1
Block Length .
(K Words) -
{a) Cache &
Block
27
Word
Length
(b} Main memory
Figure 1.17 Cache/Main-Memory Structure
$ Cache Design
= Cache size
= small caches have a significant impact on
performance
= Block size

= the unit of data exchanged between cache
and main memory

= hit means the information was found in the
cache

= larger block size more hits until probability
of using newly fetched data becomes less
than the probability of reusing data that

has been moved out of cache
32

16

§ Cache Design

= Mapping function

= determines which cache location the block
will occupy

= Replacement algorithm
= determines which block to replace
» Least-Recently-Used (LRU) algorithm

33

$ Cache Design

= Write policy
= When the memory write operation takes
place
= Can occur every time block is updated

= Can occur only when block is replaced
= Minimizes memory operations
= Leaves memory in an obsolete state

34

17

$ Programmed I/O

» Processor checks status until

I/O module performs the
action, not the processor

Sets appropriate bits in the
I/O status register

No interrupts occur

operation is complete

Issue Read

—» command to HCPU — 1O

Error

Next instruction
(2) Programmed VO

$ Interrupt-Driven I/O

Processor is interrupted when
I/0 module ready to exchange
data

Processor is free to do other
work
No needless waiting

Consumes a lot of processor
time because every word read
or written passes through the
processor

Issue Read PU — IO

L0 module - else

Module

CPU — memory
into memory 4

Next instruction
(b) Interrupt-driven 'O

—» command to +Do something

18

$ Direct Memory Access

= Transfers a block of data
directly to or from
memory

= An interrupt is sent when
the task is complete

= The processor is only

involved at the beginning © piectmemory sccess

and end of the transfer

Issue Read
block command
0 LD module

Read status === Interrupt
of DMA
module DMA — CPU

MNext instruction

T P alse

PU — DMA
Do something

37

19

