* Computer System Overview

Chapter 1

m_ng_, System

= Exploits the hardware resources of one
Or more processors

= Provides a set of services to system
users

= Manages secondary memory and I/O
devices

o Basic Elements

= Processor
= Main Memory
= referred to as real memory or primary memory
= volatile
= I/O modules
= secondary memory devices
= communications equipment
= terminals
= System bus
= communication among processors, memory, and
1/0 modules
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o Top-Level Components
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Figure 1.1 Computer Components: Top-Level View

mgﬂ Registers

= User-visible registers

= Enable programmer to minimize main-
memory references by optimizing register
use
= Control and status registers

= Used by processor to control operating of
the processor

= Used by operating-system routines to
control the execution of programs

i User-Visible Registers

= May be referenced by machine language

= Available to all programs - application
programs and system programs
= Types of registers
= Data
= Address
= Index

= Segment pointer
= Stack pointer




i User-Visible Registers

= Address Registers
= Index

= involves adding an index to a base value to get an
address

= Segment pointer

= when memory is divided into segments, memory is
referenced by a segment and an offset

= Stack pointer
= points to top of stack

i Control and Status Registers

= Program Counter (PC)

= Contains the address of an instruction to be

fetched

= Instruction Register (IR)

= Contains the instruction most recently fetched
= Program Status Word (PSW)

= condition codes

= Interrupt enable/disable

= Supervisor/user mode

$ Control and Status Registers

= Condition Codes or Flags
= Bits set by the processor hardware as a result of
operations

= Can be accessed by a program but not altered

= Examples
= positive result
= negative result
= Zero
= Overflow

o [nstruction Cycle
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Figure 1.2 Basic Instruction Cycle
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i Instruction Fetch and Execute

= The processor fetches the instruction
from memory

= Program counter (PC) holds address of
the instruction to be fetched next

= Program counter is incremented after
each fetch

o [nstruction Register

= Fetched instruction is placed in the instruction
register
= Types of instructions
= Processor-memory
= transfer data between processor and memory
= Processor-1/0
= data transferred to or from a peripheral device
= Data processing
= arithmetic or logic operation on data
= Control
= alter sequence of execution
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i Example of Program Execution
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Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

i Direct Memory Access (DMA)

= I/O exchanges occur directly with
memory

= Processor grants I/O module authority
to read from or write to memory

= Relieves the processor responsibility for
the exchange

= Processor is free to do other things
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o Interrupts

= An interruption of the normal sequence of
execution

= Improves processing efficiency

= Allows the processor to execute other
instructions while an I/O operation is in
progress

= A suspension of a process caused by an event
external to that process and performed in
such a way that the process can be resumed

$Clisesof Interrupts

= Program
= arithmetic overflow
= division by zero
= execute illegal instruction
= reference outside user’s memory space
= Timer
= [/O
= Hardware failure
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o [nterrupt Handler

= A program that determines nature of
the interrupt and performs whatever
actions are needed

= Control is transferred to this program
= Generally part of the operating system

o [nterrupt Cycle
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Figure 1.7 Instruction Cycle with Interrupts

18




o [nterrupt Cycle

= Processor checks for interrupts

= If no interrupts fetch the next
instruction for the current program

= If an interrupt is pending, suspend
execution of the current program, and
execute the interrupt handler
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Figure 1.5 Program Flow of Control Without and With Interrupts

Cser Program

= Disable interrupts

while an interrupt

is being processed

= Processor ignores

any new interrupt
request signals

Figure 112 Transfer of Control with Multiple Interrupts

Multiple Interrupts:
Sequential Order

= Disable interrupts so processor can
complete task

= Interrupts remain pending until the
processor enables interrupts

= After interrupt handler routine
completes, the processor checks for
additional interrupts
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i Multiple Interrupts:Priorities

= Higher priority interrupts cause lower-
priority interrupts to wait

= Causes a lower-priority interrupt
handler to be interrupted

= Example when input arrives from
communication ling, it needs to be
absorbed quickly to make room for
more input

Multipr_q_g__ramming

= Processor has more than one program to
execute

= The sequence the programs are executed
depend on their relative priority and whether
they are waiting for I/O

= After an interrupt handler completes, control
may not return to the program that was
executing at the time of the interrupt
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iLWx ...... Hierarchy

Figure 1.14 The Memory Hierarchy

m@_gyvn the Hierarchy

= Decreasing cost per bit
= Increasing capacity
= Increasing access time

= Decreasing frequency of access of the
memory by the processor
= locality of reference
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= A portion of main memory used as a
buffer to temporarily to hold data for
the disk

= Disk writes are clustered

= Some data written out may be
referenced again. The data are
retrieved rapidly from the software
cache instead of slowly from disk

wmﬁmory

= Invisible to operating system
= Increase the speed of memory

= Processor speed is faster than memory
speed
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w?ﬂﬁmory
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Figure 1.16 Cache and Main Memory

w?ﬂﬁmory

= Contains a portion of main memory
= Processor first checks cache

= If not found in cache, the block of
memory containing the needed
information is moved to the cache
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Figure 1.17 Cache/Main-Memory Structure

= Cache size

= small caches have a significant impact on
performance

= Block size

= the unit of data exchanged between cache
and main memory

= hit means the information was found in the
cache

= larger block size more hits until probability
of using newly fetched data becomes less
than the probability of reusing data that
has been moved out of cache
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o Cache Design

= Mapping function

= determines which cache location the block
will occupy

= Replacement algorithm
= determines which block to replace
= Least-Recently-Used (LRU) algorithm

o Cache Design

= Write policy
= When the memory write operation takes
place
= Can occur every time block is updated

= Can occur only when block is replaced
= Minimizes memory operations
» Leaves memory in an obsolete state
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immmed 1/0

= I/O module performs the
action, not the processor

= Sets appropriate bits in the
I/0 status register

= No interrupts occur

= Processor checks status until
operation is complete

m_EE:_Driven I/0

= Processor is interrupted when
I/O module ready to exchange
data

= Processor is free to do other
work

= No needless waiting
= Consumes a lot of processor
time because every word read

or written passes through the
processor

Next instruction

(b) Interrupt-<driven VO




i Direct Memory Access

= Transfers a block of data
directly to or from

ssue Reac PU — DMA
memory e r*nﬁf
= An interrupt is sent when [Faaam - - e
the task is complete iy [DMHCW
= The processor is only Next st

involved at the beginning © o mmor scces
and end of the transfer




