* Computer System Overview

Chapter 1

m_ng_, System

= Exploits the hardware resources of one
Or more processors

= Provides a set of services to system
users

= Manages secondary memory and I/O
devices

o Basic Elements

= Processor
= Main Memory
= referred to as real memory or primary memory
= volatile
= I/O modules
= secondary memory devices
= communications equipment
= terminals
= System bus
= communication among processors, memory, and
1/0 modules

3

o Top-Level Components

CPU Main Memory

System

B

1/O Module

=

Butters

Figure 1.1 Computer Components: Top-Level View

mgﬂ Registers

= User-visible registers

= Enable programmer to minimize main-
memory references by optimizing register
use
= Control and status registers

= Used by processor to control operating of
the processor

= Used by operating-system routines to
control the execution of programs

i User-Visible Registers

= May be referenced by machine language

= Available to all programs - application
programs and system programs
= Types of registers
= Data
= Address
= Index

= Segment pointer
= Stack pointer

i User-Visible Registers

= Address Registers
= Index

= involves adding an index to a base value to get an
address

= Segment pointer

= when memory is divided into segments, memory is
referenced by a segment and an offset

= Stack pointer
= points to top of stack

i Control and Status Registers

= Program Counter (PC)

= Contains the address of an instruction to be

fetched

= Instruction Register (IR)

= Contains the instruction most recently fetched
= Program Status Word (PSW)

= condition codes

= Interrupt enable/disable

= Supervisor/user mode

$ Control and Status Registers

= Condition Codes or Flags
= Bits set by the processor hardware as a result of
operations

= Can be accessed by a program but not altered

= Examples
= positive result
= negative result
= Zero
= Overflow

o [nstruction Cycle

Fetch Cycle Execute Cycle
Fetch Next Execute
START I i I HALT

Figure 1.2 Basic Instruction Cycle

10

i Instruction Fetch and Execute

= The processor fetches the instruction
from memory

= Program counter (PC) holds address of
the instruction to be fetched next

= Program counter is incremented after
each fetch

o [nstruction Register

= Fetched instruction is placed in the instruction
register
= Types of instructions
= Processor-memory
= transfer data between processor and memory
= Processor-1/0
= data transferred to or from a peripheral device
= Data processing
= arithmetic or logic operation on data
= Control
= alter sequence of execution

12

i Example of Program Execution

Memory CPURegviers| Memory CPURepiers
W To ok [Eoolre | ao[io e e
wifsoal | [JacloEoai] o003 Ac
o] WIoTalr | eloa] (e
240[0 0T 240[0CT0T
sailTo0g slTo0g
sep 1 sepz

Memory CPUReghiers| Memory | CPURegiiers
300[T 5470 rc | 3o0[T37370] rC
55T 000 5] ac] soF5] act
oozl ® [l
940[070°0 3] 940[00 03] *it2=s
241 oo
Step3 Siepd

Memory CPURegiers| Memory CPURepiers
w0194 re | soo[o i) e
301 000 s|ac)3of5o 21 0 0 0 3] AC]|
B s S e [) e e |13
240[000 T 240[0T0T
sailCo0g sulcoos
seps seps

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

i Direct Memory Access (DMA)

= I/O exchanges occur directly with
memory

= Processor grants I/O module authority
to read from or write to memory

= Relieves the processor responsibility for
the exchange

= Processor is free to do other things

14

o Interrupts

= An interruption of the normal sequence of
execution

= Improves processing efficiency

= Allows the processor to execute other
instructions while an I/O operation is in
progress

= A suspension of a process caused by an event
external to that process and performed in
such a way that the process can be resumed

$Clisesof Interrupts

= Program
= arithmetic overflow
= division by zero
= execute illegal instruction
= reference outside user’s memory space
= Timer
= [/O
= Hardware failure

16

o [nterrupt Handler

= A program that determines nature of
the interrupt and performs whatever
actions are needed

= Control is transferred to this program
= Generally part of the operating system

o [nterrupt Cycle

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disablec

P Fetch Next Execute ::"":::“':;
Instruction Interrupt]

Enabled

HALT '

Figure 1.7 Instruction Cycle with Interrupts

18

o [nterrupt Cycle

= Processor checks for interrupts

= If no interrupts fetch the next
instruction for the current program

= If an interrupt is pending, suspend
execution of the current program, and
execute the interrupt handler

User 70
Program Pmgram
T A
J
0] ST |@
1
- I
I R
o 10y a
w7/ 1 (Connang
—— e
N R
ro
I N @
! ! / END
O] I %
' E 3
iR AV TalS
ol L) Interrupt 1r Interrupl
1 ‘," @) Vi T Handle e L Handlds
Ay — 4 . — [FIF Y et}
|l W (. VepemmA T
WRITE 7" WRITE S © | weme IS |©
iatlri il A LR e A
! e END {7 END
' @ - J i
1 L '/ i
i s /
S J
] ¥ @ I
@ v
’
| ' \
I L+ i
WRITE WRITE WRITE ¥

{) No interrupts (b) Interrups: short 1O wait (e} Interrupts: long 1O wait

Figure 1.5 Program Flow of Control Without and With Interrupts

Cser Program

= Disable interrupts

while an interrupt

is being processed

= Processor ignores

any new interrupt
request signals

Figure 112 Transfer of Control with Multiple Interrupts

Multiple Interrupts:
Sequential Order

= Disable interrupts so processor can
complete task

= Interrupts remain pending until the
processor enables interrupts

= After interrupt handler routine
completes, the processor checks for
additional interrupts

22

i Multiple Interrupts:Priorities

= Higher priority interrupts cause lower-
priority interrupts to wait

= Causes a lower-priority interrupt
handler to be interrupted

= Example when input arrives from
communication ling, it needs to be
absorbed quickly to make room for
more input

Multipr_q_g__ramming

= Processor has more than one program to
execute

= The sequence the programs are executed
depend on their relative priority and whether
they are waiting for I/O

= After an interrupt handler completes, control
may not return to the program that was
executing at the time of the interrupt

24

iLWx Hierarchy

Figure 1.14 The Memory Hierarchy

m@_gyvn the Hierarchy

= Decreasing cost per bit
= Increasing capacity
= Increasing access time

= Decreasing frequency of access of the
memory by the processor
= locality of reference

26

= A portion of main memory used as a
buffer to temporarily to hold data for
the disk

= Disk writes are clustered

= Some data written out may be
referenced again. The data are
retrieved rapidly from the software
cache instead of slowly from disk

wmﬁmory

= Invisible to operating system
= Increase the speed of memory

= Processor speed is faster than memory
speed

28

w?ﬂﬁmory

‘ CPU Cache Main Memory

Figure 1.16 Cache and Main Memory

w?ﬂﬁmory

= Contains a portion of main memory
= Processor first checks cache

= If not found in cache, the block of
memory containing the needed
information is moved to the cache

30

Line Memory
Number Tag Block address

0 | o
1

1
2 Block
] (K words)

Biock Length
(K Words) .

(a) Cache

Block

— Word
Length

(b) Main memory
Figure 1.17 Cache/Main-Memory Structure

= Cache size

= small caches have a significant impact on
performance

= Block size

= the unit of data exchanged between cache
and main memory

= hit means the information was found in the
cache

= larger block size more hits until probability
of using newly fetched data becomes less
than the probability of reusing data that
has been moved out of cache
32

o Cache Design

= Mapping function

= determines which cache location the block
will occupy

= Replacement algorithm
= determines which block to replace
= Least-Recently-Used (LRU) algorithm

o Cache Design

= Write policy
= When the memory write operation takes
place
= Can occur every time block is updated

= Can occur only when block is replaced
= Minimizes memory operations
» Leaves memory in an obsolete state

34

immmed 1/0

= I/O module performs the
action, not the processor

= Sets appropriate bits in the
I/0 status register

= No interrupts occur

= Processor checks status until
operation is complete

m_EE:_Driven I/0

= Processor is interrupted when
I/O module ready to exchange
data

= Processor is free to do other
work

= No needless waiting
= Consumes a lot of processor
time because every word read

or written passes through the
processor

Next instruction

(b) Interrupt-<driven VO

i Direct Memory Access

= Transfers a block of data
directly to or from

ssue Reac PU — DMA
memory e r*nﬁf
= An interrupt is sent when [Faaam - - e
the task is complete iy [DMHCW
= The processor is only Next st

involved at the beginning © o mmor scces
and end of the transfer

