Threads, SMP, and
1 Microkernels

Chapter 4

Process

= Resource ownership - process is
allocated a virtual address space to hold
the process image

= Scheduling/execution- follows an
execution path that may be interleaved
with other processes

= These two characteristics are treated
independently by the operating system

Process

= Dispatching is referred to as a thread

= Resource ownership is referred to as a
process or task

Multithfggding

= Operating system supports multiple threads
of execution within a single process

= MS-DOS supports a single thread

= UNIX supports multiple user processes but
only supports one thread per process

= Windows 2000, Solaris, Linux, Mach, and
0S/2 support multiple threads

5

one process
‘one thread

88

‘one process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

s = Instruction trace

Figure 41 Threads and Processes [ANDE97]

Process

= Have a virtual address space which
holds the process image

= Protected access to processors, other
processes, files, and I/O resources

o Thread

= An execution state (running, ready, etc.)
= Saved thread context when not running
= Has an execution stack

= Some per-thread static storage for local
variables

= Access to the memory and resources of its
process
= all threads of a process share this

Single-Threaded Multithreaced
Process Model Process Model
el o] Wne
. [Turead |§ [Threaa || [Threaa |}
Process ser 1| Controt |1 || Controi ||| Control [I
Control Stack L miock | 1| wiock Ji 1] piock |
Block i [L !
| 0 L !
Lser Kernel Process | || User i I User i I| User i
Mdse.' Stack control | || Stack |, 1| Stack | 1| Stack |
Spce. Lo
Space | 1 1 1
0 : I } I :
User : Kernel : } Kernel } } Kernel :
Address | || Stack | || Stack |; || Stack |
L 1 | 1
Space [] [1 '

Figure 4.2 Single Threaded and Multithreaded Process Models

éBLeﬁt._s_ _____ of Threads

= Takes less time to create a new thread than a
process

= Less time to terminate a thread than a
process

= Less time to switch between two threads
within the same process

= Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

Uses of Threads in a Single-

= Foreground to background work
= Asynchronous processing

= Speed execution

= Modular program structure

10

o Threads

= Suspending a process involves
suspending all threads of the process
since all threads share the same
address space

= Termination of a process, terminates all
threads within the process

o Thread States

= States associated with a change in
thread state
= Spawn
= Spawn another thread
= Block
= Unblock
= Finish
= Deallocate register context and stacks

12

Remote Procedure Call Using
i Threads

Time ————
RPC RPC
Request Request

Process 1 SLLLLLLTIILL, IS LTSS SSLSSS,

Gy sGneD

{a) RPC Using Single Thread

7774 Blocked, waiting for response to RPC
ESSSY Blocked, waiting for processor, which is in use by Thread B
B Running

Figure 4.3 Remote Procedure Call (RPC) Using Threadq

&ULrLevel Threads

= All thread management is done by the
application

= The kernel is not aware of the existence
of threads

Med Approaches

= Example is Solaris
= Thread creation done in the user space

= Bulk of scheduling and synchronization
of threads done in the user space

Remote Procedure Call Using
i Threads

RPC (Gered)

Request

Thread A (Process 1) Z i N |

Thread B (Process 1) (77777777777
i —
Request @

{b) RPC Using One Thread per Server {ona uniprocessor)

Blocked, waiting for response to RPC
[SSSSY Blocked, waiting for processor, which is in use by Thread B
BN Running

Figure 4.3 Remote Procedure Call (RPC) Using Threadq
14

MEg_yel Threads

= W2K, Linux, and OS/2 are examples of
this approach

= Kernel maintains context information for
the process and the threads

= Scheduling is done on a thread basis

16

§ob I $b
’ﬁ% User ‘ | ‘ User \ /T,,m User
Library Space Space ‘ Library ‘ Space

Kernel Kernel Kernel|
Space Space Space
ONONE)
®
© >
() Pure user-level) Pure kernek-level {©) Combined

S User-level thread @ Kerneklevel thread @ Process

Figure 4.6 User-Level and Kernel-Level Threads

Relationship Between Threads

Threads:Process Description Example Systems

Traditi UNIX i

1:1 Each thread of ion is a
unique process with its own
address space and resources.

M:1 A process defines an address Windows NT, Solaris, 0S/2,
space and dynamic resource 0S/390, MACH
ownership. Multiple threads
may be created and executed
within that process.

Relationship Between Threads

Threads:Process Description Example Systems

1M A thread may migrate from one Ra (Clouds), Emerald
process environment to
another. This allows a thread
to be easily moved among
distinct systems.

M:M Combines attributes of M:1 TRIX
and 1:M cases

20

Categories of Computer

= Single Instruction Single Data (SISD)
= single processor executes a single
instruction stream to operate on data
stored in a single memory
= Single Instruction Multiple Data (SIMD)

= each instruction is executed on a different
set of data by the different processors

Categories of Computer

= Multiple Instruction Single Data (MISD)
= a sequence of data is transmitted to a set of
processors, each of which executes a different
instruction sequence. Never implemented
= Multiple Instruction Multiple Data (MIMD)
= a set of processors simultaneously execute
different instruction sequences on different data
sets

22

Parallel Processor

SIMD MIMD
(single instruction (multiple instruction
multiple data stream) multiple data stream)
Shared-Memory Distributed-Memory
(tightly coupled) (loosely coupled)
Master/Slave Symmetric Clusters
Multiprocessors
(SMP)

Figure 4.7 Parallel Processor Architectures

i Symmetric Multiprocessing

= Kernel can execute on any processor

= Typically each processor does self-
scheduling form the pool of available
process or threads

24

Vo
rvo Adapter

Subsytem

Vo
Adapter

Vo
Adapter

Figure 4.9 Symmetric Multiprocessor Organization

Multiprocessor Operating

= Simultaneous concurrent processes or
threads

= Scheduling

= Synchronization

= Memory Management

= Reliability and Fault Tolerance

26

o Vicrokernels

= Small operating system core

= Contains only essential operating systems
functions

= Many services traditionally included in the

operating system are now external
subsystems

= device drivers

= file systems

= virtual memory manager
= windowing system

= security services

Benefits of a Microkernel

= Uniform interface on request made by a
process

= All services are provided by means of message
passing

= Extensibility

= Allows the addition of new services
= Flexibility

= New features added

= Existing features can be subtracted

28

Benefits of a Microkernel

= Portability

= Changes needed to port the system to a
new processor is changed in the
microkernel - not in the other services

= Reliability
= Modular design
= Small microkernel can be rigorously tested

Benefits of Microkernel

= Distributed system support

= Messages are sent without knowing what
the target machine is

= Object-oriented operating system

= Components are objects with clearly
defined interfaces that can be
interconnected to form software

30

o Vicrokernel Design

= Low-level memory management

= mapping each virtual page to a physical
page frame

= Inter-process communication
= I/O and interrupt management

Access
token

Virtual address space description

P .

Avallable
Object Table objects
HEH
Handle1 i
r—
P —
Handle2 1o
I
Handle3 Lo

L

Figure 4.12 Windows 2000 Process and Its Resources

7

Windows 2000 owon Toran

- Thread ID
Thread Object e
Dynamic priosity

Base priodl;

= ooy | RS

Thread processor affinity
Attributes

Thread execution time
Alert status
Suspension count
Impersonation token
Termination port
Thread exit status

Create thread

Open thread

Query thread information
Set thread information
_— Current thread
Sexticey Terminate thread

Get context

Set context

Suspend

Resume

Alert thread

Test thread alert
Register lermination port

(b) Thread object

34

31
Windows 2000
Process Object
Object Type LA
o | i
Create process
Open provess
Services (e s I T
Set precess nfomnation
el
(@) Process object
33
Windows 2000
Thread States
= Ready
= Standby
= Running
= Waiting
= Transition
= Terminated
35

Runnable

Plck to . Standby g
Run, Switch

Preempted
Ready Running

4 4 |
—]

Resource nblock/ Resume Block/ [Terminate
Avallablle urce Avallablle
Suspend
. Waiting

[Tr o [Terminated
Resource Not A vallabile

Not Runnable

Figure 4.14 Windows 2000 Thread States

o Solaris

= Process includes the user’s address
space, stack, and process control block

= User-level threads
= Lightweight processes
= Kernel threads

UNIX Process Structure Solaris Process Structure
Process 1D Process 1D
User IDs User 1Ds
i] i]
I | I |
i | i |
I | I |
i] i 1
Table Table
Memary Map Memary Map
i Do e C

Figure 4.16

Process Structure in Traditional UNIX and Solaris [LEWI96]

Stop User-Level Threads
Runnable
Continue Wakeup
Preempt

Stop.
Stopped Sleeping
Dispateh
Stop =
—{ Active

or Preempt, Running stop

Runnable

Blocking
System
can
Continug
Wakeup
Blocked Stop,

Lightweight Processes

Figure 417 Solaris User-Level Thread and LWP States

Process 1

Process 2

§ ¢

X

[Kernel

[Hardware

DB =] [r]
Slwer-lewlthmnd @ Kernelevel thread (L) Light-weight Process E Processor

Figure 4.15 Solaris

eaded Arcl

E il

= Synchronization
= Suspension

= Preemption

= Yielding

$ Solaris _'_I'_.__.n_.read Execution

40

i Linux Process

= State

= Scheduling information

= Identifiers

= Interprocess communication
= Links

= Times and timers

= File system

= Virtual memory

= Processor-specific context

42

$ Linux Stgjgﬂcﬂes of a Process

= Running

= Interruptable

= Uninterruptable
= Stopped

= Zombie

43

even
|
or
even
el
\l LA

Figure 4.18 Linux Process/Thread Model

