
1

1

Threads, SMP, and
Microkernels

Chapter 4

2

Process

� Resource ownership - process is
allocated a virtual address space to hold
the process image

� Scheduling/execution- follows an
execution path that may be interleaved
with other processes

� These two characteristics are treated
independently by the operating system

3

Process

� Dispatching is referred to as a thread
� Resource ownership is referred to as a

process or task

4

Multithreading

� Operating system supports multiple threads
of execution within a single process

� MS-DOS supports a single thread
� UNIX supports multiple user processes but

only supports one thread per process
� Windows 2000, Solaris, Linux, Mach, and

OS/2 support multiple threads

6

Process

� Have a virtual address space which
holds the process image

� Protected access to processors, other
processes, files, and I/O resources

2

7

Thread

� An execution state (running, ready, etc.)
� Saved thread context when not running
� Has an execution stack
� Some per-thread static storage for local

variables
� Access to the memory and resources of its

process
� all threads of a process share this

9

Benefits of Threads

� Takes less time to create a new thread than a
process

� Less time to terminate a thread than a
process

� Less time to switch between two threads
within the same process

� Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

10

Uses of Threads in a Single-
User Multiprocessing System

� Foreground to background work
� Asynchronous processing
� Speed execution
� Modular program structure

11

Threads

� Suspending a process involves
suspending all threads of the process
since all threads share the same
address space

� Termination of a process, terminates all
threads within the process

12

Thread States

� States associated with a change in
thread state
� Spawn

� Spawn another thread

� Block
� Unblock
� Finish

� Deallocate register context and stacks

3

13

Remote Procedure Call Using
Threads

14

Remote Procedure Call Using
Threads

15

User-Level Threads

� All thread management is done by the
application

� The kernel is not aware of the existence
of threads

16

Kernel-Level Threads

� W2K, Linux, and OS/2 are examples of
this approach

� Kernel maintains context information for
the process and the threads

� Scheduling is done on a thread basis

17

Combined Approaches

� Example is Solaris
� Thread creation done in the user space
� Bulk of scheduling and synchronization

of threads done in the user space

4

19

Relationship Between Threads
and Processes

Threads:Process Description Example Systems

1:1 Each thread of execution is a
unique process with its own
address space and resources.

Traditional UNIX implementations

M:1 A process defines an address
space and dynamic resource
ownership. Multiple threads
may be created and executed
within that process.

Windows NT, Solaris, OS/2,
OS/390, MACH

20

Relationship Between Threads
and Processes

Threads:Process Description Example Systems

1:M A thread may migrate from one
process environment to
another. This allows a thread
to be easily moved among
distinct systems.

Ra (Clouds), Emerald

M:M Combines attributes of M:1
and 1:M cases

TRIX

21

Categories of Computer
Systems

� Single Instruction Single Data (SISD)
� single processor executes a single

instruction stream to operate on data
stored in a single memory

� Single Instruction Multiple Data (SIMD)
� each instruction is executed on a different

set of data by the different processors

22

Categories of Computer
Systems

� Multiple Instruction Single Data (MISD)
� a sequence of data is transmitted to a set of

processors, each of which executes a different
instruction sequence. Never implemented

� Multiple Instruction Multiple Data (MIMD)
� a set of processors simultaneously execute

different instruction sequences on different data
sets

24

Symmetric Multiprocessing

� Kernel can execute on any processor
� Typically each processor does self-

scheduling form the pool of available
process or threads

5

26

Multiprocessor Operating
System Design Considerations

� Simultaneous concurrent processes or
threads

� Scheduling
� Synchronization
� Memory Management
� Reliability and Fault Tolerance

27

Microkernels

� Small operating system core
� Contains only essential operating systems

functions
� Many services traditionally included in the

operating system are now external
subsystems
� device drivers
� file systems
� virtual memory manager
� windowing system
� security services

28

Benefits of a Microkernel
Organization

� Uniform interface on request made by a
process
� All services are provided by means of message

passing

� Extensibility
� Allows the addition of new services

� Flexibility
� New features added
� Existing features can be subtracted

29

Benefits of a Microkernel
Organization

� Portability
� Changes needed to port the system to a

new processor is changed in the
microkernel - not in the other services

� Reliability
� Modular design
� Small microkernel can be rigorously tested

30

Benefits of Microkernel
Organization

� Distributed system support
� Messages are sent without knowing what

the target machine is

� Object-oriented operating system
� Components are objects with clearly

defined interfaces that can be
interconnected to form software

6

31

Microkernel Design

� Low-level memory management
� mapping each virtual page to a physical

page frame

� Inter-process communication
� I/O and interrupt management

33

Windows 2000
Process Object

34

Windows 2000
Thread Object

35

Windows 2000
Thread States

� Ready
� Standby
� Running
� Waiting
� Transition
� Terminated

7

37

Solaris

� Process includes the user’s address
space, stack, and process control block

� User-level threads
� Lightweight processes
� Kernel threads

40

Solaris Thread Execution

� Synchronization
� Suspension
� Preemption
� Yielding

42

Linux Process

� State
� Scheduling information
� Identifiers
� Interprocess communication
� Links
� Times and timers
� File system
� Virtual memory
� Processor-specific context

8

43

Linux States of a Process

� Running
� Interruptable
� Uninterruptable
� Stopped
� Zombie

