Threads, SMP, and
1 Microkernels

Chapter 4

Process

= Resource ownership - process is
allocated a virtual address space to hold
the process image

= Scheduling/execution- follows an
execution path that may be interleaved
with other processes

= These two characteristics are treated
independently by the operating system

Process

= Dispatching is referred to as a thread

= Resource ownership is referred to as a
process or task

Multithfggding

= Operating system supports multiple threads
of execution within a single process

= MS-DOS supports a single thread

= UNIX supports multiple user processes but
only supports one thread per process

= Windows 2000, Solaris, Linux, Mach, and
0S/2 support multiple threads
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Figure 41 Threads and Processes [ANDE97]

Process

= Have a virtual address space which
holds the process image

= Protected access to processors, other
processes, files, and I/O resources




o Thread

= An execution state (running, ready, etc.)
= Saved thread context when not running
= Has an execution stack

= Some per-thread static storage for local
variables

= Access to the memory and resources of its
process
= all threads of a process share this
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Figure 4.2 Single Threaded and Multithreaded Process Models

éBLeﬁt._s_ _____ of Threads

= Takes less time to create a new thread than a
process

= Less time to terminate a thread than a
process

= Less time to switch between two threads
within the same process

= Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

Uses of Threads in a Single-

= Foreground to background work
= Asynchronous processing

= Speed execution

= Modular program structure
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o Threads

= Suspending a process involves
suspending all threads of the process
since all threads share the same
address space

= Termination of a process, terminates all
threads within the process

o Thread States

= States associated with a change in
thread state
= Spawn
= Spawn another thread
= Block
= Unblock
= Finish
= Deallocate register context and stacks
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Remote Procedure Call Using
i Threads
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Figure 4.3 Remote Procedure Call (RPC) Using Threadq

&ULrLevel Threads

= All thread management is done by the
application

= The kernel is not aware of the existence
of threads

Med Approaches

= Example is Solaris
= Thread creation done in the user space

= Bulk of scheduling and synchronization
of threads done in the user space
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Figure 4.3 Remote Procedure Call (RPC) Using Threadq
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MEg_yel Threads

= W2K, Linux, and OS/2 are examples of
this approach

= Kernel maintains context information for
the process and the threads

= Scheduling is done on a thread basis
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Relationship Between Threads

Threads:Process Description Example Systems

Traditi UNIX i

1:1 Each thread of ion is a
unique process with its own
address space and resources.

M:1 A process defines an address Windows NT, Solaris, 0S/2,
space and dynamic resource 0S/390, MACH
ownership. Multiple threads
may be created and executed
within that process.

Relationship Between Threads

Threads:Process Description Example Systems

1M A thread may migrate from one Ra (Clouds), Emerald
process environment to
another. This allows a thread
to be easily moved among
distinct systems.

M:M Combines attributes of M:1 TRIX
and 1:M cases
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Categories of Computer

= Single Instruction Single Data (SISD)
= single processor executes a single
instruction stream to operate on data
stored in a single memory
= Single Instruction Multiple Data (SIMD)

= each instruction is executed on a different
set of data by the different processors

Categories of Computer

= Multiple Instruction Single Data (MISD)
= a sequence of data is transmitted to a set of
processors, each of which executes a different
instruction sequence. Never implemented
= Multiple Instruction Multiple Data (MIMD)
= a set of processors simultaneously execute
different instruction sequences on different data
sets
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Parallel Processor

SIMD MIMD
(single instruction (multiple instruction
multiple data stream) multiple data stream)
Shared-Memory Distributed-Memory
(tightly coupled) (loosely coupled)
Master/Slave Symmetric Clusters
Multiprocessors
(SMP)

Figure 4.7 Parallel Processor Architectures

i Symmetric Multiprocessing

= Kernel can execute on any processor

= Typically each processor does self-
scheduling form the pool of available
process or threads
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Figure 4.9 Symmetric Multiprocessor Organization

Multiprocessor Operating

= Simultaneous concurrent processes or
threads

= Scheduling

= Synchronization

= Memory Management

= Reliability and Fault Tolerance
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o Vicrokernels

= Small operating system core

= Contains only essential operating systems
functions

= Many services traditionally included in the

operating system are now external
subsystems

= device drivers

= file systems

= virtual memory manager
= windowing system

= security services

Benefits of a Microkernel

= Uniform interface on request made by a
process

= All services are provided by means of message
passing

= Extensibility

= Allows the addition of new services
= Flexibility

= New features added

= Existing features can be subtracted

28

Benefits of a Microkernel

= Portability

= Changes needed to port the system to a
new processor is changed in the
microkernel - not in the other services

= Reliability
= Modular design
= Small microkernel can be rigorously tested

Benefits of Microkernel

= Distributed system support

= Messages are sent without knowing what
the target machine is

= Object-oriented operating system

= Components are objects with clearly
defined interfaces that can be
interconnected to form software
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o Vicrokernel Design

= Low-level memory management

= mapping each virtual page to a physical
page frame

= Inter-process communication
= I/O and interrupt management
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Figure 4.12 Windows 2000 Process and Its Resources
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Windows 2000
Thread States
= Ready
= Standby
= Running
= Waiting
= Transition
= Terminated
35

Runnable

Plck to . Standby g
Run, Switch

Preempted
Ready Running

4 4 |
— ]

Resource nblock/ Resume Block/ [Terminate
Avallablle urce Avallablle
Suspend
. Waiting

[ Tr o [ Terminated
Resource Not A vallabile

Not Runnable

Figure 4.14 Windows 2000 Thread States




o Solaris

= Process includes the user’s address
space, stack, and process control block

= User-level threads
= Lightweight processes
= Kernel threads
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Figure 4.16

Process Structure in Traditional UNIX and Solaris [LEWI96]
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Figure 417 Solaris User-Level Thread and LWP States
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= Synchronization
= Suspension

= Preemption

= Yielding

$ Solaris _'_I'_.__.n_.read Execution
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i Linux Process

= State

= Scheduling information

= Identifiers

= Interprocess communication
= Links

= Times and timers

= File system

= Virtual memory

= Processor-specific context
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$ Linux Stgjgﬂcﬂes of a Process

= Running

= Interruptable

= Uninterruptable
= Stopped

= Zombie
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