
1

1

Concurrency: Mutual Exclusion
and Synchronization

Chapter 5

2

Currency

� Communication among processes
� Sharing resources
� Synchronization of multiple processes
� Allocation of processor time

2

3

Concurrency

� Multiple applications
� Multiprogramming

� Structured application
� Application can be a set of concurrent

processes
� Operating-system structure

� Operating system is a set of processes or
threads

4

Difficulties with Concurrency

� Sharing global resources
� Management of allocation of resources
� Programming errors difficult to locate

3

5

A Simple Example

void echo()

{

chin = getchar();

chout = chin;

putchar(chout);

}

6

A Simple Example
Process P1 Process P2

. .

in = getchar(); .

. in = getchar();

chout = chin; chout = chin;

putchar(chout); .

. putchar(chout);

. .

4

7

Operating System Concerns

� Keep track of active processes
� Allocate and deallocate resources

� Processor time
� Memory
� Files
� I/O devices

� Protect data and resources
� Result of process must be independent of the

speed of execution of other concurrent
processes

8

Process Interaction

� Processes unaware of each other
� Processes indirectly aware of each other
� Process directly aware of each other

5

9

Competition Among Processes
for Resources

� Mutual Exclusion
� Critical sections

� Only one program at a time is allowed in its
critical section

� Example only one process at a time is allowed
to send command to the printer

� Deadlock
� Starvation

10

Cooperation Among Processes
by Sharing

� Writing must be mutually exclusive
� Critical sections are used to provide

data integrity

6

11

Cooperation Among Processes
by Communication

� Messages are passes
� Mutual exclusion is not a control requirement

� Possible to have deadlock
� Each process waiting for a message from the

other process

� Possible to have starvation
� Two processes sending message to each other

while another process waits for a message

12

Requirements for Mutual
Exclusion

� Only one process at a time is allowed in
the critical section for a resource

� A process that halts in its non-critical
section must do so without interfering
with other processes

� No deadlock or starvation

7

13

Requirements for Mutual
Exclusion

� A process must not be delayed access
to a critical section when there is no
other process using it

� No assumptions are made about
relative process speeds or number of
processes

� A process remains inside its critical
section for a finite time only

14

First Attempt

� Busy Waiting
� Process is always checking to see if it can

enter the critical section
� Process can do nothing productive until it

gets permission to enter its critical section

8

15

Coroutine

� Designed to be able to pass execution
control back and forth between
themselves

� Inadequate to support concurrent
processing

16

Second Attempt

� Each process can examine the other’s status
but cannot alter it

� When a process wants to enter the critical
section is checks the other processes first

� If no other process is in the critical section, it
sets its status for the critical section

� This method does not guarantee mutual
exclusion

� Each process can check the flags and then
proceed to enter the critical section at the
same time

9

17

Third Attempt

� Set flag to enter critical section before check
other processes

� If another process is in the critical section
when the flag is set, the process is blocked
until the other process releases the critical
section

� Deadlock is possible when two processes set
their flags to enter the critical section. Now
each process must wait for the other process
to release the critical section

18

Fourth Attempt

� A process sets its flag to indicate its desire to
enter its critical section but is prepared to
reset the flag

� Other processes are checked. If they are in
the critical region, the flag is reset and later
set to indicate desire to enter the critical
region. This is repeated until the process can
enter the critical region.

10

19

Fourth Attempt

� It is possible for each process to set
their flag, check other processes, and
reset their flags. This scenario will not
last very long so it is not deadlock. It is
undesirable

20

Correct Solution

� Each process gets a turn at the critical
section

� If a process wants the critical section, it
sets its flag and may have to wait for its
turn

11

21

Mutual Exclusion:
Hardware Support

� Interrupt Disabling
� A process runs until it invokes an operating-

system service or until it is interrupted
� Disabling interrupts guarantees mutual exclusion
� Processor is limited in its ability to interleave

programs
� Multiprocessing

� disabling interrupts on one processor will not
guarantee mutual exclusion

22

Mutual Exclusion:
Hardware Support

� Special Machine Instructions
� Performed in a single instruction cycle
� Not subject to interference from other

instructions
� Reading and writing
� Reading and testing

12

23

Mutual Exclusion:
Hardware Support

� Test and Set Instruction
boolean testset (int i) {

if (i == 0) {

i = 1;

return true;

}

else {

return false;

}

}

24

Mutual Exclusion:
Hardware Support

� Exchange Instruction
void exchange(int register,

int memory) {

int temp;

temp = memory;

memory = register;

register = temp;

}

13

25

Mutual Exclusion Machine
Instructions

� Advantages
� Applicable to any number of processes on

either a single processor or multiple
processors sharing main memory

� It is simple and therefore easy to verify
� It can be used to support multiple critical

sections

26

Mutual Exclusion Machine
Instructions

� Disadvantages
� Busy-waiting consumes processor time
� Starvation is possible when a process

leaves a critical section and more than one
process is waiting.

� Deadlock
� If a low priority process has the critical region

and a higher priority process needs it, the
higher priority process will obtain the processor
to wait for the critical region

14

27

Semaphores

� Special variable called a semaphore is
used for signaling

� If a process is waiting for a signal, it is
suspended until that signal is sent

� Wait and signal operations cannot be
interrupted

� Queue is used to hold processes waiting
on the semaphore

28

Semaphores

� Semaphore is a variable that has an
integer value
� May be initialized to a nonnegative number
� Wait operation decrements the semaphore

value
� Signal operation increments semaphore

value

15

29

Producer/Consumer Problem

� One or more producers are generating
data and placing these in a buffer

� A single consumer is taking items out of
the buffer one at time

� Only one producer or consumer may
access the buffer at any one time

30

Producer

producer:

while (true) {

/* produce item v */

b[in] = v;

in++;

}

16

31

Consumer

consumer:

while (true) {

while (in <= out)

/*do nothing */;

w = b[out];

out++;

/* consume item w */

}

32

Producer with Circular Buffer

producer:

while (true) {

/* produce item v */

while ((in + 1) % n == out) /* do
nothing */;

b[in] = v;

in = (in + 1) % n

}

17

33

Consumer with Circular Buffer

consumer:

while (true) {

while (in == out)

/* do nothing */;

w = b[out];

out = (out + 1) % n;

/* consume item w */

}

18

35

Infinite Buffer

36

Barbershop Problem

19

37

Monitors

� Monitor is a software module
� Chief characteristics

� Local data variables are accessible only by
the monitor

� Process enters monitor by invoking one of
its procedures

� Only one process may be executing in the
monitor at a time

20

39

Message Passing

� Enforce mutual exclusion
� Exchange information

send (destination, message)

receive (source, message)

40

Synchronization

� Sender and receiver may or may not be
blocking (waiting for message)

� Blocking send, blocking receive
� Both sender and receiver are blocked until

message is delivered
� Called a rendezvous

21

41

Synchronization

� Nonblocking send, blocking receive
� Sender continues processing such as

sending messages as quickly as possible
� Receiver is blocked until the requested

message arrives

� Nonblocking send, nonblocking receive
� Neither party is required to wait

42

Addressing

� Direct addressing
� send primitive includes a specific identifier

of the destination process
� receive primitive could know ahead of time

which process a message is expected
� receive primitive could use source

parameter to return a value when the
receive operation has been performed

22

43

Addressing

� Indirect addressing
� messages are sent to a shared data

structure consisting of queues
� queues are called mailboxes
� one process sends a message to the

mailbox and the other process picks up the
message from the mailbox

23

45

Message Format

46

Readers/Writers Problem

� Any number of readers may
simultaneously read the file

� Only one writer at a time may write to
the file

� If a writer is writing to the file, no
reader may read it

