
1

1

Concurrency: Deadlock and 
Starvation

Chapter 6

2

Deadlock

� Permanent blocking of a set of 
processes that either compete for 
system resources or communicate with 
each other

� No efficient solution
� Involve conflicting needs for resources 

by two or more processes

6

Reusable Resources

� Used by one process at a time and not 
depleted by that use

� Processes obtain resources that they later 
release for reuse by other processes

� Processors, I/O channels, main and 
secondary memory, files, databases, and 
semaphores

� Deadlock occurs if each process holds one 
resource and requests the other



2

7

Example of Deadlock

8

Another Example of Deadlock

� Space is available for allocation of 200K 
bytes, and the following sequence of 
events occur

� Deadlock occurs if both processes 
progress to their second request

P1. . .

. . .
Request 80K bytes;

Request 60K bytes;

P2. . .

. . .
Request 70K bytes;

Request 80K bytes;

9

Consumable Resources

� Created (produced) and destroyed 
(consumed) by a process

� Interrupts, signals, messages, and 
information in I/O buffers

� Deadlock may occur if a Receive 
message is blocking

� May take a rare combination of events 
to cause deadlock

10

Example of Deadlock

� Deadlock occurs if receive is blocking
P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);

11

Conditions for Deadlock

� Mutual exclusion
� only one process may use a resource at a 

time

� Hold-and-wait
� A process request all of its required 

resources at one time

12

Conditions for Deadlock

� No preemption
� If a process holding certain resources is 

denied a further request, that process must 
release its original resources

� If a process requests a resource that is 
currently held by another process, the 
operating system may preempt the second 
process and require it to release its 
resources



3

13

Conditions for Deadlock
� Circular wait

� Prevented by defining a linear ordering of 
resource types

14

Deadlock Avoidance

� A decision is made dynamically whether 
the current resource allocation request 
will, if granted, potentially lead to a 
deadlock

� Requires knowledge of future process 
request

15

Two Approaches to 
Deadlock Avoidance

� Do not start a process if its demands 
might lead to deadlock

� Do not grant an incremental resource 
request to a process if this allocation 
might lead to deadlock

16

Resource Allocation Denial

� Referred to as the banker’s algorithm
� State of the system is the current 

allocation of resources to process
� Safe state is where there is at least one 

sequence that does not result in 
deadlock

� Unsafe state is a state that is not safe

17

Determination of a Safe State
Initial State

18

Determination of a Safe State
P2 Runs to Completion



4

19

Determination of a Safe State
P1 Runs to Completion

20

Determination of a Safe State
P3 Runs to Completion

21

Determination of an 
Unsafe State

22

Determination of an 
Unsafe State

23

Deadlock Avoidance

� Maximum resource requirement must be 
stated in advance

� Processes under consideration must be 
independent; no synchronization 
requirements

� There must be a fixed number of resources to 
allocate

� No process may exit while holding resources

24

Deadlock Detection



5

25

Strategies once Deadlock 
Detected

� Abort all deadlocked processes
� Back up each deadlocked process to some 

previously defined checkpoint, and restart all 
process
� original deadlock may occur

� Successively abort deadlocked processes until 
deadlock no longer exists

� Successively preempt resources until 
deadlock no longer exists

26

Selection Criteria Deadlocked 
Processes

� Least amount of processor time 
consumed so far

� Least number of lines of output 
produced so far

� Most estimated time remaining
� Least total resources allocated so far
� Lowest priority

27

Dining Philosophers Problem

28

UNIX Concurrency 
Mechanisms

� Pipes
� Messages
� Shared memory
� Semaphores
� Signals

29

Solaris Thread Synchronization 
Primitives

� Mutual exclusion (mutex) locks
� Semaphores
� Multiple readers, single writer 

(readers/writer) locks
� Condition variables



6

32

Windows 2000 Concurrency 
Mechanisms

� Process
� Thread
� File
� Console input
� File change notification
� Mutex
� Semaphore
� Event
� Waitable timer


