Concurrency: Deadlock and
1 Starvation

= Permanent blocking of a set of
processes that either compete for
system resources or communicate with
each other

= No efficient solution

= Involve conflicting needs for resources
by two or more processes

Chapter 6
" |
& i
b 1 m !
i ‘N
3 2 % %E‘ \E =
LD 4 1 = Zhal gﬁ
‘ ! @‘ ! o
(a) Deadlock possible (b) Deadlock

Figure 6.1 Ilustration of Deadlock

Progress

A
A Release
Required y——
Get A

B
Required

Get B

deadlock
== P inevitable

]
i
i

_ Progress
> ore

Get A Get B Release A Release B

e
Requlred L__—V—_J

B Required

Figure 6.2 Example of Deadlock [BACO98]

Progress

A
A Release
Required 3
GetA

B
Required

Get B

GetA ReleaseA Get B Release B

A Required B Required

Figure 6.3 Example of No Deadlock [BACO98]

_ Progress

of P

Reusab__l_g__ _____ Resources

= Used by one process at a time and not
depleted by that use

= Processes obtain resources that they later
release for reuse by other processes

= Processors, I/O channels, main and
secondary memory, files, databases, and
semaphores

= Deadlock occurs if each process holds one
resource and requests the other

o Example of Deadlock

Step

Process P

Action

Process Q

Action

Step
Po Request (D) qp Request (T)
Py Lock (D) q, Lock (T)
Py Request (T) 9 Request (D)
Ps Lock (T) 95 Lock (D)
Py Perform function qy Perform function
Ps Unlock (D) g5 Unlock (T)
Ps Unlock (T) 95 Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

i Another Example of Deadlock

= Space is available for allocation of 200K
bytes, and the following sequence of
events occur

Pl 72

Request 80K bytes; Request 70K bytes;

Request 60K bytes; Request 80K bytes;

= Deadlock occurs if both processes
progress to their second request

$ Consunjgple Resources

= Created (produced) and destroyed
(consumed) by a process

= Interrupts, signals, messages, and
information in I/O buffers

= Deadlock may occur if a Receive
message is blocking

= May take a rare combination of events
to cause deadlock

o Example of Deadlock

= Deadlock occurs if receive is blocking

Pl P2
Receive(P2); Receive(P1);

Send(P2, M1); Send(P1, M2);

10

i Conditigm_s for Deadlock

= Mutual exclusion
n only Oone process may use a resource ata
time
= Hold-and-wait

= A process request all of its required
resources at one time

i Conditigm_s for Deadlock

= No preemption
=« If a process holding certain resources is
denied a further request, that process must
release its original resources

=« If @ process requests a resource that is
currently held by another process, the
operating system may preempt the second
process and require it to release its
resources

12

Conditions for Deadlock

= Circular wait

= Prevented by defining a linear ordering of
resource types

A
= Ly by

el
Process Process
P2
S

Lot , et

Resource
B

Figure 6.5 Circular Wait 3

$ DeadIo__c__ﬂ_Ig_ﬂ_ﬂAvoidance

= A decision is made dynamically whether
the current resource allocation request
will, if granted, potentially lead to a
deadlock

= Requires knowledge of future process
request

14

Two Approaches to
Deadlock Avoidance

= Do not start a process if its demands
might lead to deadlock

= Do not grant an incremental resource
request to a process if this allocation
might lead to deadlock

$ Resour__c_g_"_AIIocation Denial

= Referred to as the banker’s algorithm

= State of the system is the current
allocation of resources to process

= Safe state is where there is at least one
sequence that does not result in
deadlock

= Unsafe state is a state that is not safe

16

Determination of a Safe State
i Initial State

=
B
[
=
g
%

Rl R2 33
[P [5T¢6]

Pl 3 2
P2 6 1
P3| 3 1
P4 4 2

Pl
P2
P3
B4

Resource Vector

NENE

[CIENIS]

Rl R2 R3
Claica Matiz Allocation Matix [o[1]1]

Available Vector

(2) Initial state

Determination of a Safe State
P2 Runs to Completion

=
=
g
=
=
=
=
B
o
&

Rl _R2 R3
[(s1z2T3]

1 3
2 [0
3 [3
4 [4

F1
P2
3
T4

Available Wector

ol el ofm

ofo
w|=|elo

ol alofm
olm|of—

Claim Matrix Allecation Matrix

(b) P2 runs to completion

18

Determination of a Safe State

R1 R2 R3 k1 k2 k3 R1 R2 R3
p2 0 0 0 P2 0 0 0
33 1 | 4 2 1 1 Available Vector
P4 4 2 2 P4 0 0 2

Claim Matriz Allocation Matrix

(c) P1 runs to completion

Determination of a Safe State

19

Determination of an
Unsafe State

Rl R2 R3 Rl R2 R3 Rl B2 R3

pr[3]2]2 pr[1Jo o v | 3]¢

g B L i BRI Resource Vestor
B3 |[1]4 32|11
42 |2 [0]0 |2

Rl Rz E3

Claim Matrix Allocation Matrix

Available Vector

(a) Initial state

Rl _R2 R3 Rl Rz R3 Rl R2 E3
pr[oJoJo pr[ofuoJo IENEREN
[0 [0]o0 20 [0 [0
Bl o oo 30 |0 |0 Available Vector
B[4 2|z M [0 [0 |2

Claim Matrix Allocation Matrix

(d) P3 runs to completion
20

R1 R2 R3 R1 R2 R3 R1 Rz R3
3272 LY IR [o [t 1]
P2 6 1 3 P2 5 1 1
P3 3 1) P3 2 1 1 Available Vector
M4 22 Mo o2

Claim Matrix Allocation hatrix

(b) P1 requests one unit each of R1 and B3

i Deadlog__lgm__._Avoidance

= Maximum resource requirement must be
stated in advance

= Processes under consideration must be
independent; no synchronization
requirements

= There must be a fixed number of resources to
allocate

= No process may exit while holding resources

22
i Deadlock Detection
RI R2 R3 R4 RS Rl R2 R3 R4 RS 1 R2 R3
pr{o|1]ofo]|1 pij1of1]1]o0 ‘2‘1|1‘2‘1‘
P20 o |1]0]1 211000
P3loofolo|1 ps{o|ofo1]o0 Resource Vector
a1 o]1]0]1 pajojofofo]o

Rl R2 R3 R4 RS

Request Mt Q socsionraaiea (00 0o]1]

Available Vector

Figure 6.9 Example for Deadlock Detection

24

Strategies once Deadlock

= Abort all deadlocked processes

= Back up each deadlocked process to some

previously defined checkpoint, and restart all
process

= original deadlock may occur

= Successively abort deadlocked processes until
deadlock no longer exists

= Successively preempt resources until
deadlock no longer exists

$ Dining Philosophers Problem

Selection Criteria Deadlocked

= Least amount of processor time
consumed so far

= Least number of lines of output
produced so far

= Most estimated time remaining
= Least total resources allocated so far
= Lowest priority

26

UNIX Concurrency

= Pipes

= Messages

= Shared memory
= Semaphores

= Signals

28

owner (3 octets)

lock (1 octet)

walters (2 octets)

type specific Info (4 octets)
(possibly a turnstile id,

= Mutual exclusion (mutex) locks
= Semaphores

= Multiple readers, single writer
(readers/writer) locks

= Condition variables

ok type filler,
or statistics poiner)

(a) MUTEX lock

(1 octet)
wlock (1 octet)

walters (2 octets)

count (4 octets)

(h) Semaphore

L Figure 6.13 Solaris Synchronization Data Structures |

Type (1 octet)
wlock (1 octet)

wallers (2 octets)

union (4 oclets)
(statistic pointer or
number of write requests)

thread owner (4 octets)

(c) Reader/wrlter lock

walters (2 octets) I

{d) Condition varlable

Figure 6.13 Solaris Synchronization Data Structures

Windows 2000 Concurrency

= Process

= Thread

= File

= Console input

= File change notification
= Mutex

= Semaphore

= Event

= Waitable timer

32

