q Memory Management

Chapter 7

$ Memory Management

= Subdividing memory to accommodate
multiple processes

= Memory needs to be allocated
efficiently to pack as many processes
into memory as possible

Memory Management
$ Requirements

= Relocation

= Programmer does not know where the program
will be placed in memory when it is executed

= While the program is executing, it may be
swapped to disk and returned to main memory at
a different location (relocated)

= Memory references must be translated in the code
to actual physical memory address

L J

Process control

| Priscess Control Block

information Entry point >
o program
Eranch
instruction
Increasing
address
values
Reference
to data
Current top B
of stack

Figure 7.1 Addressing Requirements for a Process

Memory Management
$ Requirements

= Protection
= Processes should not be able to reference memory
locations in another process without permission
= Impossible to check absolute addresses in
programs since the program could be relocated

= Must be checked during execution

= Operating system cannot anticipate all of the memory
references a program will make

Memory Management
$ Requirements

= Sharing

= Allow several processes to access the same
portion of memory

= Better to allow each process (person)
access to the same copy of the program
rather than have their own separate copy

Memory Management
g Requirements

= Logical Organization
= Programs are written in modules

= Modules can be written and compiled
independently

= Different degrees of protection given to
modules (read-only, execute-only)

= Share modules

Memory Management
$ Requirements

= Physical Organization
= Memory available for a program plus its
data may be insufficient

= Overlaying allows various modules to be
assigned the same region of memory

= Programmer does not know how much
space will be available

§ Fixed Partitioning

= Equal-size partitions
= any process whose size is less than or equal to the
partition size can be loaded into an available
partition
= if all partitions are full, the operating system can
swap a process out of a partition

= a program may not fit in a partition. The
programmer must design the program with
overlays

$ Fixed Partitioning

= Main memory use is inefficient. Any
program, no matter how small, occupies
an entire partition. This is called
internal fragmentation.

10

Operaling System Operating System
8M 8M

2M

B aM

6 M
8M

8M

8M

8M

8M

2zM
8M

8M

6M

8M

(a) Equal-size partitions (h) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

Placement Algorithm with
$ Partitions

= Equal-size partitions

= because all partitions are of equal size, it
does not matter which partition is used

= Unequal-size partitions

= can assign each process to the smallest
partition within which it will fit

= queue for each partition

= processes are assigned in such a way as to
minimize wasted memory within a partition

12

New
Processes

Operating
System

IIITTTT—»

IO —
T —
T —

T —

IO —

T —

{a) One process queue per partition

Figure 7.3 Memory Assignment for Fixed Partitioning

New
Processes

Operating
System

(b) Single process queuq

$ Dynamic Partitioning

Partitions are of variable length and number
Process is allocated exactly as much memory

as required

Eventually get holes in the memory. This is
called external fragmentation

Must use compaction to shift processes so
they are contiguous and all free memory is in

one block

14

System EM System System System
Process | 20 Process 1 20M Process | }:-::M
& seatn Process 2 % 14M Process 2 %14&1
el
270 Process 3 150
J j-4M
iah i) ic) id}
Figure 7.4 The Effect of Dynamic Partitioning
System Sysbem System System
Priscess 2 14M
Priocess 1 20 Process 1 20 20M
=t
LM Process 4 FAY | Proscess 4 FAR | Process 4 EAR |
&l =10 &M
Process 3 1861 Proscess 3 188 Priscess 3 } 1 8M Priscess 3 180
4M 4M Fam Foam
i) in g ih)

Figure 7.4 The Effect of Dynamic Partitioning

Dynamic Partitioning
$ Placement Algorithm

= Operating system must decide which free
block to allocate to a process

= Best-fit algorithm

= Chooses the block that is closest in size to the
request

= Worst performer overall

= Since smallest block is found for process, the
smallest amount of fragmentation is left memory
compaction must be done more often

17

Dynamic Partitioning
$ Placement Algorithm

= First-fit algorithm
= Fastest

= May have many processes loaded in the
front end of memory that must be
searched over when trying to find a free
block

18

Dynamic Partitioning
Placement Algorithm

= Next-fit

= More often allocate a block of memory at
the end of memory where the largest block
is found

= The largest block of memory is broken up
into smaller blocks

= Compaction is required to obtain a large
block at the end of memory

19

86 M

12M First Fit 12M

22M

oM |

Best Fit

Last 18M
allocated M
block (14K)

l—b

AM AM

M

2

14M [e cce 14M

36M
20M

(@) Before (b) After

Figure 7.5 Example Memory Configuration Before
and After Allocation of 16 Mbyte Block

10

g Buddy System

= Entire space available is treated as a
single block of 2Y

= If a request of size s such that 2Y1 < s
<= 2Y, entire block is allocated

= Otherwise block is split into two equal
buddies

= Process continues until smallest block
greater than or equal to s is generated

21

1 Mbyte block | 1M |
uest 100K [A=128K] 128K | 256 K | 512K |
uest240 K [A=128K] 128K | B=256K | 512K |

Request 64 K [A= 128 K[c-s1{64 K| B=256K | 512K |

Request 256 K [A= 128 K[c-e 164 K] B=256K | D =256 K | 256 K |
Release B [A= 128 K[c-s1{64 K| 256 K | D =256 K | 256 K |
Release A [128K [c-s1{6d K| 256 K | D =256 K | 256 K |

Request 75 K [E= 128 K[c-s1{64 K| 256 K | D =256 K | 256 K |
Release C [E= 128K| 128K | 256 K | D =256 K | 256 K |
Release E | 512K | D =256 K | 256 K |
Release D | 1M |

Figure 7.6 Example of Buddy System

™M

512K

256K

128K

64K

h 4 k. v
A= 28K =sH64 K] 256 K D =256 K 256 K

Figure 7.7 Tree Representation of Buddy System

$ Relocation

= When program loaded into memory the
actual (absolute) memory locations are
determined

= A process may occupy different partitions
which means different absolute memory
locations during execution (from swapping)

= Compaction will also cause a program to
occupy a different partition which means
different absolute memory locations

24

12

Addresses

= Logical

» reference to a memory location independent of
the current assignment of data to memory

« translation must be made to the physical address
= Relative
= address expressed as a location relative to some

known point
= Physical
=« the absolute address or actual location in main
memory
25
Relative address
@ Process Control Bleck
o e e +
—’Ed" | Program
L Absolute
[g |——sfcompr] -4
I | |
| 1 1
| I mm==-]
| ¥ Data
: Interrupt to
| operating system
e ey
Stack

Process image in
main memory

Figure 7.8 Hardware Support for Relocation

13

Registers Used during
§ Execution

= Base register

= starting address for the process
= Bounds register

= ending location of the process

= These values are set when the process
is loaded and when the process is
swapped in

27

Registers Used during
$ Execution

= The value of the base register is added
to a relative address to produce an
absolute address

= The resulting address is compared with
the value in the bounds register

= If the address is not within bounds, an
interrupt is generated to the operating
system

28

14

4

Paging

= Partition memory into small equal-size chunks
and divide each process into the same size
chunks

= The chunks of a process are called pages and
chunks of memory are called frames

= Operating system maintains a page table for
each process

= contains the frame location for each page in
the process

= memory address consist of a page humber
and offset within the page

29

Frame Main memory Main memory Main memory
pumber

0 0 AD 0 AN

1 1 Al 1 Al

2 2 A2 2 Al

3 3 A3 3 A3

4 4 4 POSNNELODNN

5 s 5 INNNNSELL]

6 6 6 RN B2

7 7 7

B . B

o o o

1 10 10

11 1 1

12 12 12

13 13 13

14 14 14

(a) Fifteen Available Frames (b) Load Process A (b) Load Process B

Figure 7.9 Assignment of Process Pages to Free Frames

15

Main memory

A
Al
Al
Al
NN
NNNZRNN
NNNNEANN
v
VA
AR,
WA C 3

[= S I = T L

L]

—
=

-
[=]

—
ol

-
e

(d)y Load Process C

[= S - T N S S)

— -
P FUR L=

Main memory

AL

Al

A2

A

v

i

AR,

L3

(€) Swapoul B

[= S I = T L

Eo R oE e

Main memory

A0

Al

Al

A3

1)1

D.1

D.2
Vv

A

AR,

O C 3

D3

D.4

(0 Load Process D

Figure 7.9 Assignment of Process Pages to Free Frames

| O 0] —

I 1 1 —

Rl 2 2| —

B 3 Process B
page table

0o 7

1 8

20 9

3| 10
Process C
page table

0
1
2
3
El

Process D
page table

El

5

6

11

12

Page Tables for Example

13

14

Free frame

list

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

16

§ Segmentation

= All segments of all programs do not
have to be of the same length

= There is a maximum segment length

= Addressing consist of two parts - a
segment number and an offset

= Since segments are not equal,
segmentation is similar to dynamic
partitioning

33

17

