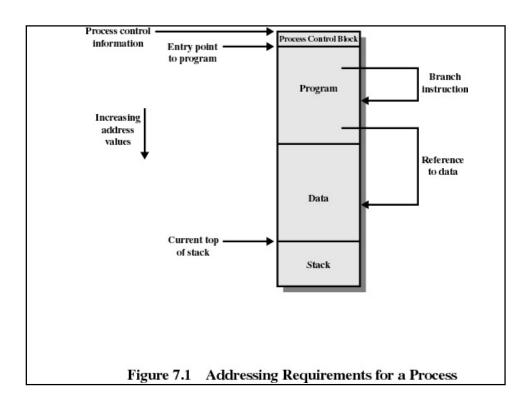


Memory Management

Chapter 7

1

Memory Management


- Subdividing memory to accommodate multiple processes
- Memory needs to be allocated efficiently to pack as many processes into memory as possible

Memory Management Requirements

Relocation

- Programmer does not know where the program will be placed in memory when it is executed
- While the program is executing, it may be swapped to disk and returned to main memory at a different location (relocated)
- Memory references must be translated in the code to actual physical memory address

Memory Management Requirements

Protection

- Processes should not be able to reference memory locations in another process without permission
- Impossible to check absolute addresses in programs since the program could be relocated
- Must be checked during execution
 - Operating system cannot anticipate all of the memory references a program will make

5

Memory Management Requirements

Sharing

- Allow several processes to access the same portion of memory
- Better to allow each process (person)
 access to the same copy of the program
 rather than have their own separate copy

Memory Management Requirements

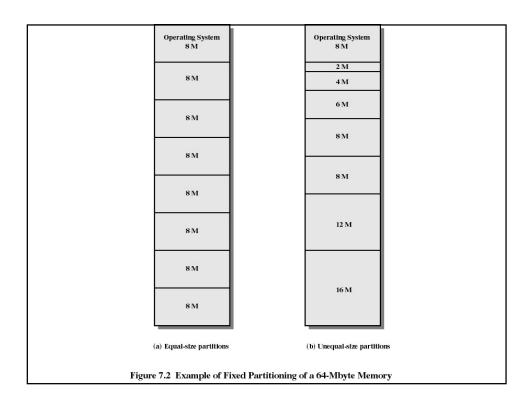
- Logical Organization
 - Programs are written in modules
 - Modules can be written and compiled independently
 - Different degrees of protection given to modules (read-only, execute-only)
 - Share modules

7

Memory Management Requirements

- Physical Organization
 - Memory available for a program plus its data may be insufficient
 - Overlaying allows various modules to be assigned the same region of memory
 - Programmer does not know how much space will be available

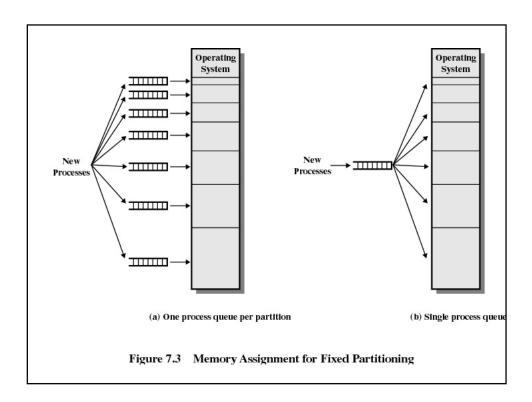
Fixed Partitioning


- Equal-size partitions
 - any process whose size is less than or equal to the partition size can be loaded into an available partition
 - if all partitions are full, the operating system can swap a process out of a partition
 - a program may not fit in a partition. The programmer must design the program with overlays

9

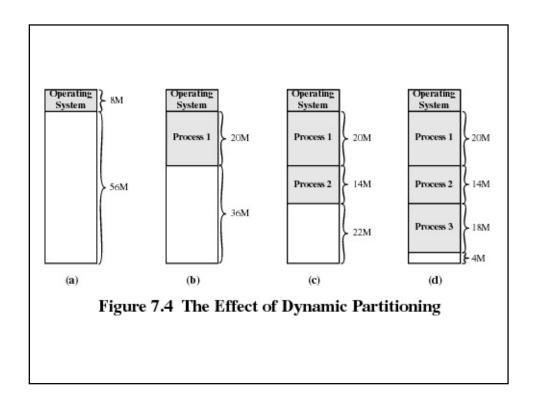
Fixed Partitioning

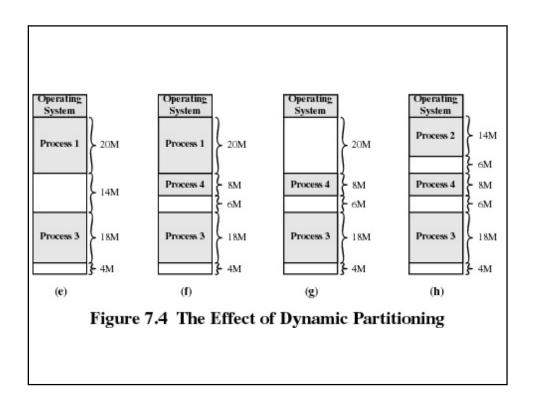
 Main memory use is inefficient. Any program, no matter how small, occupies an entire partition. This is called internal fragmentation.



Placement Algorithm with Partitions

- Equal-size partitions
 - because all partitions are of equal size, it does not matter which partition is used
- Unequal-size partitions
 - can assign each process to the smallest partition within which it will fit
 - queue for each partition
 - processes are assigned in such a way as to minimize wasted memory within a partition


.2



Dynamic Partitioning

- Partitions are of variable length and number
- Process is allocated exactly as much memory as required
- Eventually get holes in the memory. This is called external fragmentation
- Must use compaction to shift processes so they are contiguous and all free memory is in one block

Dynamic Partitioning Placement Algorithm

- Operating system must decide which free block to allocate to a process
- Best-fit algorithm
 - Chooses the block that is closest in size to the request
 - Worst performer overall
 - Since smallest block is found for process, the smallest amount of fragmentation is left memory compaction must be done more often

17

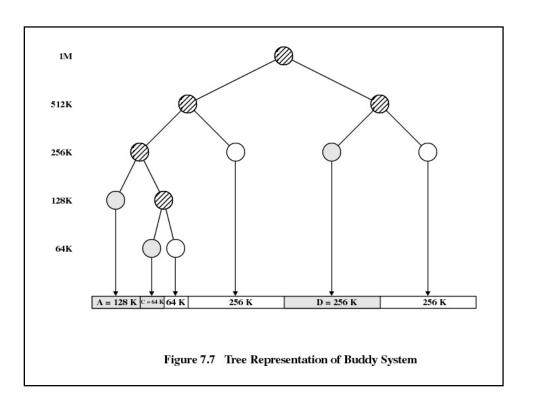
Dynamic Partitioning Placement Algorithm

- First-fit algorithm
 - Fastest
 - May have many processes loaded in the front end of memory that must be searched over when trying to find a free block

Dynamic Partitioning Placement Algorithm

Next-fit

- More often allocate a block of memory at the end of memory where the largest block is found
- The largest block of memory is broken up into smaller blocks
- Compaction is required to obtain a large block at the end of memory

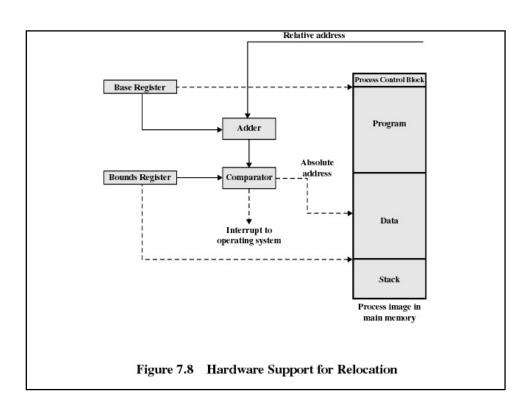


Buddy System

- Entire space available is treated as a single block of 2^U
- If a request of size s such that 2^{U-1} < s <= 2^U, entire block is allocated
 - Otherwise block is split into two equal buddies
 - Process continues until smallest block greater than or equal to s is generated

00 K A = 128 K 128 K 40 K A = 128 K 128 K 64 K A = 128 K C = 64 K 64 K	256 K B = 256 K B = 256 K	512 K 512 K		
64 K A = 128 K C = 64 K 64 K				
	B = 256 K	512 V		
ECK 1 100 K o civica X	$A = 128 \text{ K} _{C = 64 \text{ K}} _{64 \text{ K}} $ $B = 256 \text{ K}$		512 K	
56 K A = 128 K C = 64 K 64 K	B = 256 K	D = 256 K	256 K	
ase B $A = 128 \text{ K} = 64 \text{ K} = 64 \text{ K}$	256 K	D = 256 K	256 K	
ase A 128 K C = 64 K 64 K	256 K	D = 256 K	256 K	
75 K E = 128 K C = 64 K 64 K	256 K	D = 256 K	256 K	
ase C E = 128 K 128 K	256 K	D = 256 K	256 K	
sse E 512 K	512 K		256 K	
ise C E = 128 K 128 K		D = 256 K D = 256 K		

Figure 7.6 Example of Buddy System


Relocation

- When program loaded into memory the actual (absolute) memory locations are determined
- A process may occupy different partitions which means different absolute memory locations during execution (from swapping)
- Compaction will also cause a program to occupy a different partition which means different absolute memory locations

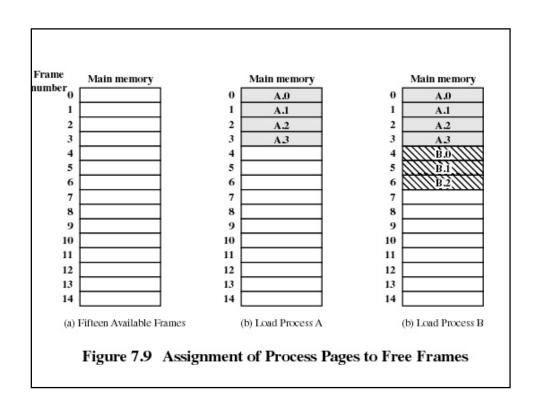
Addresses

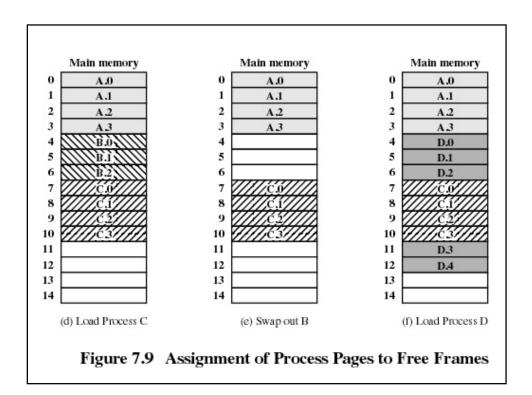
- Logical
 - reference to a memory location independent of the current assignment of data to memory
 - translation must be made to the physical address
- Relative
 - address expressed as a location relative to some known point
- Physical
 - the absolute address or actual location in main memory

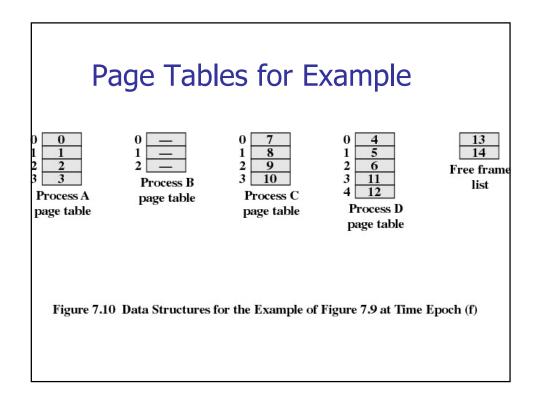
Registers Used during Execution

- Base register
 - starting address for the process
- Bounds register
 - ending location of the process
- These values are set when the process is loaded and when the process is swapped in

27


Registers Used during Execution


- The value of the base register is added to a relative address to produce an absolute address
- The resulting address is compared with the value in the bounds register
- If the address is not within bounds, an interrupt is generated to the operating system



Paging

- Partition memory into small equal-size chunks and divide each process into the same size chunks
- The chunks of a process are called pages and chunks of memory are called frames
- Operating system maintains a page table for each process
 - contains the frame location for each page in the process
 - memory address consist of a page number and offset within the page

Segmentation

- All segments of all programs do not have to be of the same length
- There is a maximum segment length
- Addressing consist of two parts a segment number and an offset
- Since segments are not equal, segmentation is similar to dynamic partitioning