* Memory Management

Chapter 7

o Memory Management

= Subdividing memory to accommodate
multiple processes

= Memory needs to be allocated
efficiently to pack as many processes
into memory as possible

Memory Management

= Relocation

= Programmer does not know where the program
will be placed in memory when it is executed

= While the program is executing, it may be
swapped to disk and returned to main memory at
a different location (relocated)

= Memory references must be translated in the code
to actual physical memory address

Trocess control
information Eniry point
to program

hJ

[Process Conteol ok
Branch
Program instruction

Reference
to data

v

Increasing,
address
values

Current 0P ———p
of stack.

Figure 7.1 Addressing Requirements for a Process

Memory Management

= Protection
= Processes should not be able to reference memory
locations in another process without permission
= Impossible to check absolute addresses in
programs since the program could be relocated
= Must be checked during execution

= Operating system cannot anticipate all of the memory
references a program will make

Memory Management

= Sharing
= Allow several processes to access the same
portion of memory
= Better to allow each process (person)
access to the same copy of the program
rather than have their own separate copy

Memory Management

= Logical Organization
= Programs are written in modules
= Modules can be written and compiled
independently
= Different degrees of protection given to
modules (read-only, execute-only)
= Share modules

Memory Management

= Physical Organization
= Memory available for a program plus its
data may be insufficient
= Overlaying allows various modules to be
assigned the same region of memory
= Programmer does not know how much
space will be available

= Equal-size partitions

= any process whose size is less than or equal to the
partition size can be loaded into an available
partition

= if all partitions are full, the operating system can
swap a process out of a partition

= a program may not fit in a partition. The
programmer must design the program with
overlays

é Fixed Partitioning

= Main memory use is inefficient. Any
program, no matter how small, occupies
an entire partition. This is called
internal fragmentation.

10

Operating System Operating System
M M

M

aM am

oM
M

M

M

M

M

M

M

M

(a) Equal.size partitions (b) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

Placement Algorithm with

= Equal-size partitions
= because all partitions are of equal size, it
does not matter which partition is used
= Unequal-size partitions

= can assign each process to the smallest
partition within which it will fit

= queue for each partition

= processes are assigned in such a way as to
minimize wasted memory within a partition

12

New
Processes

Operating Operating
System System

T —
IO —
T —
T —

New
— —
uanannns} Processes

IO —

T —

(a) One process queue per partition (b) Single process quend

Figure 7.3 Memory Assignment for Fixed Partitioning

mﬁfa rtitioning

= Partitions are of variable length and number

= Process is allocated exactly as much memory
as required

= Eventually get holes in the memory. This is
called external fragmentation

= Must use compaction to shift processes so
they are contiguous and all free memory is in

DT } an

System.

System Sysbem System

Process.

}EUM Process 1 };m Process 1 }
5eM Process 2 ‘-HM Process 2 %wu
3

36M
22M Procem 3

@)

(b)))

Figure 7.4 The Effect of Dynamic Partitioning

one block
14
[Chperatmg | [TChperating | [TperatmE | [Operating |
System System System System

b

20M Process 1 20M

Process } 14M
20M
= e

% Process 4 }- M Process 4 E- AW Process 4 | = 4M
} Y
I3

M Eam s
Process 3 (R Process 3 &M Process 3 P 18M Process 3 1EM
4M +am Fam +am
(4] n i) ()

Figure 7.4 The Effect of Dynamic Partitioning

Dynamic Partitioning

= Operating system must decide which free
block to allocate to a process

= Best-fit algorithm
= Chooses the block that is closest in size to the
request
= Worst performer overall
= Since smallest block is found for process, the
smallest amount of fragmentation is left memory
compaction must be done more often

Dynamic Partitioning

= First-fit algorithm
= Fastest

= May have many processes loaded in the
front end of memory that must be
searched over when trying to find a free
block

18

Dynamic Partitioning

= Next-fit

= More often allocate a block of memory at
the end of memory where the largest block
is found

= The largest block of memory is broken up
into smaller blocks

= Compaction is required to obtain a large
block at the end of memory

Best Fit
Last 188
allocated

block (14K)

E

O e o~

Next Fit

14M

_

@) Before

H
H

Figure 7.5 Example Memory Configuration Before
and Aftter Allocation of 16 Mbyte Block

Buddy _§X§tem

= Entire space available is treated as a
single block of 2Y
= If a request of size s such that 2Y1 < s
<= 2Y, entire block is allocated
= Otherwise block is split into two equal
buddies
= Process continues until smallest block
greater than or equal to s is generated

Mbyte block [M |
Request 100K [A=128K] 128K | 256 K | SR2K |
Request 240 K [A=128 K[128K | B=256 K | S12K |
Request 64 K [A= 128 K[-s64 K B=256K | 512K |
Request 256 K [A= 128 K[c-a¥[64 K| B=256K | D=256K | 256 K |
Release B [A= 128 K[C-eod K| 256K | D=256K | 256 K |
Release A [128K [C-eH64 K| 256 K | D=256K | 256 K |
Request 7S K [E= 28K [c-oH64 K| 256 K | D=256K | 256 K |
Release C [E= 128 K[128K | 256 K | D=256K | 256 K |
Release E [S2K | D=256K | 256 K |
Release D [1™ |

Figure 7.6 Example of Buddy System

S12K

256K

128K

64K

[A= 28 KE-ee4 K] 256 K D=256K | 256 K

Figure 7.7 Tree Representation of Buddy System

o Relocation

= When program loaded into memory the
actual (absolute) memory locations are
determined

= A process may occupy different partitions
which means different absolute memory
locations during execution (from swapping)

= Compaction will also cause a program to
occupy a different partition which means
different absolute memory locations

24

mses

= Logical
= reference to a memory location independent of
the current assignment of data to memory
= translation must be made to the physical address

= Relative
= address expressed as a location relative to some
known point
= Physical
= the absolute address or actual location in main
memory

Relative address

Process Control Block]

Base Register

Program

v Data
Interrupt to
operating system

Stack

Process image in
main memory

Figure 7.8 Hardware Support for Relocation

Registers Used during

= Base register
= starting address for the process

= Bounds register
= ending location of the process

= These values are set when the process
is loaded and when the process is
swapped in

Registers Used during

= The value of the base register is added
to a relative address to produce an
absolute address

= The resulting address is compared with
the value in the bounds register

= If the address is not within bounds, an
interrupt is generated to the operating
system

28

o Paging

= Partition memory into small equal-size chunks
and divide each process into the same size
chunks
= The chunks of a process are called pages and
chunks of memory are called frames
= Operating system maintains a page table for
each process
= contains the frame location for each page in
the process
= memory address consist of a page number
and offset within the page

Frame
humber

I N

Main memory Main memory Main memory

0 AN 0 AN
1 Al 1 Al
2 A2 2 A2
3 A3 3 A3
4 4 B0
5 5 B.1
6 6 B2
7 7
8 8
9)
n n
1 1
12 12
13 13
14 14

(a) Filleen Available Frames

(b) Load Process A (b) Load Process B

Figure 7.9 Assignment of Process Pages to Free Frames

Main memory Main memory Main memory

1} Al 0 AD (L} A0
1 Al 1 Al 1 Al
2 A2 2 A2 2 Al
3 Al 3 A3 3 Al
4 B A 4 4 D
5 TREN 5 5 D.1
[SRR 6 6 D2
7 0 7 W 7 0
8 C A% 8 A 8 A%
9 C.2 L7777 9 ¢
10 P4 3742 10 B 327 10 B4 C 37/
11 11 11 D3
12 12 12 D4
13 13 13
14 14 14
(d) Load Process C {€) Swapoul B N Load Process D

Figure 7.9 Assignment of Process Pages to Free Frames

Page Tables for Example

0] — 0 7 0| 4 13
1 1 — 1] 8 1| 5 14
3 2 == 2l 9 20 6 Free framg
B 3 Process B 3 10 311 list
Process A page table Process C 4] 12
page table page table Process D
page table

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

o Segmentation

= All segments of all programs do not
have to be of the same length

= There is a maximum segment length

= Addressing consist of two parts - a
segment number and an offset

= Since segments are not equal,
segmentation is similar to dynamic
partitioning

