
1

1

Distributed Process
Management

Chapter 14

2

Distributed Global States

� Operating system cannot know the current
state of all process in the distributed system

� A process can only know the current state of
all processes on the local system

� Remote processes only know state
information that is received by messages
� These messages represent the state in the past

3

Example

� Bank account is distributed over two
branches

� The total amount in the account is the
sum at each branch

� At 3 PM the account balance is
determined

� Messages are sent to request the
information

4

Example

5

Example

� If at the time of balance determination,
the balance from branch A is in transit
to branch B

� The result is a false reading

6

Example

2

7

Example

� All messages in transit must be
examined at time of observation

� Total consists of balance at both
branches and amount in message

8

Example

� If clocks at the two branches are not
perfectly synchronized

� Transfer amount at 3:01 from branch A
� Amount arrives at branch B at 2:59
� At 3:00 the amount is counted twice

9

Example

10

Some Terms

� Channel
� Exists between two processes if they

exchange messages

� State
� Sequence of messages that have been sent

and received along channels incident with
the process

11

Some Terms

� Snapshot
� Records the state of a process

� Global state
� The combined state of all processes

� Distributed Snapshot
� A collection of snapshots, one for each

process

12

Global State

3

13

Global State

14

Distributed Snapshot
Algorithm

15

Mutual Exclusion
Requirements

� Mutual exclusion must be enforced: only one
process at a time is allowed in its critical
section

� A process that breaks in its noncritical section
must do so without interfering with other
processes

� It must not be possible for a process
requiring access to a critical section to be
delayed indefinitely: no deadlock or
starvation

16

Mutual Exclusion
Requirements

� When no process is in a critical section, any
process that requests entry to its critical
section must be permitted to enter without
delay

� No assumptions are made about relative
process speeds or number of processors

� A process remains inside its critical section for
a finite time only

17

Centralized Algorithm for
Mutual Exclusion

� One node is designated as the control
node

� This node control access to all shared
objects

� If control node fails, mutual exclusion
breaks down

4

19

Distributed Algorithm

� All nodes have equal amount of
information, on average

� Each node has only a partial picture of
the total system and must make
decisions based on this information

� All nodes bear equal responsibility for
the final decision

20

Distributed Algorithm

� All nodes expend equal effort, on
average, in effecting a final decision

� Failure of a node, in general, does not
result in a total system collapse

� There exists no system-wide common
clock with which to regulate the time of
events

21

Ordering of Events

� Events must be ordered to ensure
mutual exclusion and avoid deadlock

� Clocks are not synchronized
� Communication delays
� State information for a process is not up

to date

22

Ordering of Events

� Need to consistently say that one event
occurs before another event

� Messages are sent when wanting to
enter critical section and when leaving
critical section

� Time-stamping
� Orders events on a distributed system
� System clock is not used

23

Time-Stamping

� Each system on the network maintains
a counter which functions as a clock

� Each site has a numerical identifier
� When a message is received, the

receiving system sets is counter to one
more than the maximum of its current
value and the incoming time-stamp
(counter)

24

Time-Stamping

� If two messages have the same time-stamp,
they are ordered by the number of their sites

� For this method to work, each message is
sent from one process to all other processes
� Ensures all sites have same ordering of messages
� For mutual exclusion and deadlock all processes

must be aware of the situation

5

28

Token-Passing Approach

� Pass a token among the participating
processes

� The token is an entity that at any time is held
by one process

� The process holding the token may enter its
critical section without asking permission

� When a process leaves its critical section, it
passes the token to another process

29

Deadlock in Resource
Allocation

� Mutual exclusion
� Hold and wait
� No preemption
� Circular wait

30

Deadlock Prevention

� Circular-wait condition can be prevented by
defining a linear ordering of resource types

� Hold-and-wait condition can be prevented by
requiring that a process request all of its
required resource at one time, and blocking
the process until all requests can be granted
simultaneously

6

31

Deadlock Avoidance

� Distributed deadlock avoidance is impractical
� Every node must keep track of the global state of

the system
� The process of checking for a safe global state

must be mutually exclusive
� Checking for safe states involves considerable

processing overhead for a distributed system with
a large number of processes and resources

32

Distributed Deadlock
Detection

� Each site only knows about its own resources
� Deadlock may involve distributed resources

� Centralized control – one site is responsible
for deadlock detection

� Hierarchical control – lowest node above the
nodes involved in deadlock

� Distributed control – all processes cooperate
in the deadlock detection function

33

Deadlock in Message
Communication

� Mutual Waiting
� Deadlock occurs in message

communication when each of a group of
processes is waiting for a message from
another member of the group and there
are no messages in transit

35

Deadlock in Message
Communication

� Unavailability of Message Buffers
� Well known in packet-switching data

networks
� Example: buffer space for A is filled with

packets destined for B. The reverse is true
at B.

36

Direct Store-and-Forward
Deadlock

7

37

Deadlock in Message
Communication

� Unavailability of Message Buffers
� For each node, the queue to the adjacent

node in one direction is full with packets
destined for the next node beyond

39

Structured Buffer Pool

