Distributed Process
* Management

Chapter 14

i Distribqgg__d Global States

= Operating system cannot know the current
state of all process in the distributed system

= A process can only know the current state of
all processes on the local system

= Remote processes only know state
information that is received by messages
= These messages represent the state in the past

= Bank account is distributed over two
branches

= The total amount in the account is the
sum at each branch

= At 3 PM the account balance is
determined

= Messages are sent to request the
information

Branch A {o} t
\ . /
Branch B '?‘ t

(a) Total= $100

Figure 14.3 Example of Determining Global States

= If at the time of balance determination,
the balance from branch A is in transit
to branch B

= The result is a false reading

Figure 14.3 Example of Determining Global States

= All messages in transit must be
examined at time of observation

= Total consists of balance at both
branches and amount in message

= If clocks at the two branches are not
perfectly synchronized

= Transfer amount at 3:01 from branch A
= Amount arrives at branch B at 2:59
= At 3:00 the amount is counted twice

55 =S100
A 3:01
Branch A

19F t
300 msg = "Transter $100
to Branch B
Sy=$100
Branch B 0

=
259 3:00

(c) Total = $200

Figure 14.3 Example of Determining Global States

mﬁﬂms

= Channel

= Exists between two processes if they
exchange messages
= State
= Sequence of messages that have been sent

and received along channels incident with
the process

10

mﬁﬂms

= Snapshot

= Records the state of a process
= Global state

= The combined state of all processes
= Distributed Snapshot

= A collection of snapshots, one for each
process

Global __S__fg__gte

Process A

0
=
Sy \ M My
Process .

/ > L
Process C " \- -/ ’i"—pl

(a) Inconsistent Global State

Sa

Figure 14.4 Inconsistent and Consistent Global States

Global §E§te

K[ya /@_,[

Process C

{b) Consistent Global State

Figure 14.4 Inconsistent and Consistent Global States

Process A L] t

Distributed Snapshot

Kl '\2 {3

Figure 145 Process and Channel Graph

14

Mutual Exclusion

= Mutual exclusion must be enforced: only one
process at a time is allowed in its critical
section

= A process that breaks in its noncritical section
must do so without interfering with other
processes

= It must not be possible for a process
requiring access to a critical section to be
delayed indefinitely: no deadlock or
starvation

Mutual Exclusion

= When no process is in a critical section, any
process that requests entry to its critical
section must be permitted to enter without
delay

= No assumptions are made about relative
process speeds or number of processors

= A process remains inside its critical section for
a finite time only

16

Centralized Algorithm for

= One node is designated as the control
node

= This node control access to all shared
objects

= If control node fails, mutual exclusion
breaks down

System 1

Py Py cce Py

System N

Py Pz o+ Py

RPy

System

RP; = Resource-controlling process insystem j
P, = User provess i in system |
R; = Resourcei insystem]

Figure 14.7 Model for Mutual Exclusion Problem in Distributed Process Management

= All nodes have equal amount of
information, on average

= Each node has only a partial picture of
the total system and must make
decisions based on this information

= All nodes bear equal responsibility for
the final decision

= All nodes expend equal effort, on
average, in effecting a final decision

= Failure of a node, in general, does not
result in a total system collapse

= There exists no system-wide common

clock with which to regulate the time of
events

20

= Events must be ordered to ensure
mutual exclusion and avoid deadlock

= Clocks are not synchronized
= Communication delays

= State information for a process is not up
to date

= Need to consistently say that one event
occurs before another event

= Messages are sent when wanting to
enter critical section and when leaving
critical section

= Time-stamping
= Orders events on a distributed system
= System clock is not used

22

= Each system on the network maintains
a counter which functions as a clock

= Each site has a numerical identifier

= When a message is received, the
receiving system sets is counter to one
more than the maximum of its current
value and the incoming time-stamp
(counter)

= If two messages have the same time-stamp,
they are ordered by the number of their sites

= For this method to work, each message is
sent from one process to all other processes
= Ensures all sites have same ordering of messages

= For mutual exclusion and deadlock all processes
must be aware of the situation

24

Time " P Py

N (a,1,1)
2\2

. /\

5 (b.5,1)

s3],

Figure 14.8 Example of Operation of Timestamping Algorithm

Time L P, Py Py

1[ta.1.1)
5 1(q.1,4)

3
2
2/)

Figure 14.9 Another Example of Operation
of Timestamping Algorithm

Send a Request to
Mutual
Exclusion Requesting All Other Processes

> Mutual
Request / \@m}n j

Kwalt
Computation
All Replies
- are Recelved

A

Critical
K Section
Return Replies ExIt from
for Watting Requests (£ oo Critical Seetion
\\oums

Figure 14.10 State Diagram for Algorithm in [RICAS81]

$ Token-Passing Approach

= Pass a token among the participating
processes

= The token is an entity that at any time is held
by one process

= The process holding the token may enter its
critical section without asking permission

= When a process leaves its critical section, it
passes the token to another process

28

Deadlock in Resource

= Mutual exclusion
= Hold and wait

= No preemption
= Circular wait

o Deadlock Prevention

= Circular-wait condition can be prevented by
defining a linear ordering of resource types

= Hold-and-wait condition can be prevented by
requiring that a process request all of its
required resource at one time, and blocking
the process until all requests can be granted
simultaneously

30

i Deadlog_mlg__._Avoidance

= Distributed deadlock avoidance is impractical

= Every node must keep track of the global state of
the system

= The process of checking for a safe global state
must be mutually exclusive

= Checking for safe states involves considerable
processing overhead for a distributed system with
a large number of processes and resources

Distributed Deadlock

= Each site only knows about its own resources
= Deadlock may involve distributed resources

= Centralized control — one site is responsible
for deadlock detection

= Hierarchical control — lowest node above the
nodes involved in deadlock

= Distributed control — all processes cooperate
in the deadlock detection function

32

Deadlock in Message

= Mutual Waiting

= Deadlock occurs in message
communication when each of a group of
processes is waiting for a message from
another member of the group and there
are no messages in transit

(rs

(ps
\‘ P3 \Ps \‘Ps
(a) No deadlock (b) Deadlock

Figure 14.16 Deadlock in Message Communication

Deadlock in Message

= Unavailability of Message Buffers
= Well known in packet-switching data
networks
= Example: buffer space for A is filled with

packets destined for B. The reverse is true
at B.

Direct Store-and-Forward

Buffer Buffer
pool full pool full

= | =

(a) Direct store-and-forward deadlock

36

Deadlock in Message
Communication —

Fille with
packets o B

Filled with
packess to D

= Unavailability of Message Buffers
= For each node, the queue to the adjacent
node in one direction is full with packets
destined for the next node beyond

Fille with Filled with
packets to A packeis i E

(b) Indirect store-and-forward deadlock

Figure 14.17 Store-and-Forward Deadlock

$ Structur_gc! Buffer Pool

Class N
Chass &
Buler space for Class 2
packets that have
traveled & hops e
Commaon Pool
(Chss)

Figure 14.18 Structured Buffer Pool for Deadlock Prevention

39

