Distributed Process
* Management

Chapter 14

i Distribqgg__d Global States

= Operating system cannot know the current
state of all process in the distributed system

= A process can only know the current state of
all processes on the local system

= Remote processes only know state
information that is received by messages
= These messages represent the state in the past

= Bank account is distributed over two
branches

= The total amount in the account is the
sum at each branch

= At 3 PM the account balance is
determined

= Messages are sent to request the
information
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Figure 14.3 Example of Determining Global States

= If at the time of balance determination,
the balance from branch A is in transit
to branch B

= The result is a false reading

Figure 14.3 Example of Determining Global States




= All messages in transit must be
examined at time of observation

= Total consists of balance at both
branches and amount in message

= If clocks at the two branches are not
perfectly synchronized

= Transfer amount at 3:01 from branch A
= Amount arrives at branch B at 2:59
= At 3:00 the amount is counted twice
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Figure 14.3 Example of Determining Global States

mﬁﬂms

= Channel

= Exists between two processes if they
exchange messages
= State
= Sequence of messages that have been sent

and received along channels incident with
the process
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mﬁﬂms

= Snapshot

= Records the state of a process
= Global state

= The combined state of all processes
= Distributed Snapshot

= A collection of snapshots, one for each
process
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Figure 14.4 Inconsistent and Consistent Global States




Global §E§te

K[ ya /@_,[

Process C

{b) Consistent Global State

Figure 14.4 Inconsistent and Consistent Global States
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Mutual Exclusion

= Mutual exclusion must be enforced: only one
process at a time is allowed in its critical
section

= A process that breaks in its noncritical section
must do so without interfering with other
processes

= It must not be possible for a process
requiring access to a critical section to be
delayed indefinitely: no deadlock or
starvation

Mutual Exclusion

= When no process is in a critical section, any
process that requests entry to its critical
section must be permitted to enter without
delay

= No assumptions are made about relative
process speeds or number of processors

= A process remains inside its critical section for
a finite time only
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Centralized Algorithm for

= One node is designated as the control
node

= This node control access to all shared
objects

= If control node fails, mutual exclusion
breaks down
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Figure 14.7 Model for Mutual Exclusion Problem in Distributed Process Management




= All nodes have equal amount of
information, on average

= Each node has only a partial picture of
the total system and must make
decisions based on this information

= All nodes bear equal responsibility for
the final decision

= All nodes expend equal effort, on
average, in effecting a final decision

= Failure of a node, in general, does not
result in a total system collapse

= There exists no system-wide common

clock with which to regulate the time of
events
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= Events must be ordered to ensure
mutual exclusion and avoid deadlock

= Clocks are not synchronized
= Communication delays

= State information for a process is not up
to date

= Need to consistently say that one event
occurs before another event

= Messages are sent when wanting to
enter critical section and when leaving
critical section

= Time-stamping
= Orders events on a distributed system
= System clock is not used
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= Each system on the network maintains
a counter which functions as a clock

= Each site has a numerical identifier

= When a message is received, the
receiving system sets is counter to one
more than the maximum of its current
value and the incoming time-stamp
(counter)

= If two messages have the same time-stamp,
they are ordered by the number of their sites

= For this method to work, each message is
sent from one process to all other processes
= Ensures all sites have same ordering of messages

= For mutual exclusion and deadlock all processes
must be aware of the situation
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Figure 14.8 Example of Operation of Timestamping Algorithm
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Figure 14.9 Another Example of Operation
of Timestamping Algorithm
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Figure 14.10 State Diagram for Algorithm in [RICAS81]

$ Token-Passing Approach

= Pass a token among the participating
processes

= The token is an entity that at any time is held
by one process

= The process holding the token may enter its
critical section without asking permission

= When a process leaves its critical section, it
passes the token to another process
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Deadlock in Resource

= Mutual exclusion
= Hold and wait

= No preemption
= Circular wait

o Deadlock Prevention

= Circular-wait condition can be prevented by
defining a linear ordering of resource types

= Hold-and-wait condition can be prevented by
requiring that a process request all of its
required resource at one time, and blocking
the process until all requests can be granted
simultaneously
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i Deadlog_mlg__._Avoidance

= Distributed deadlock avoidance is impractical

= Every node must keep track of the global state of
the system

= The process of checking for a safe global state
must be mutually exclusive

= Checking for safe states involves considerable
processing overhead for a distributed system with
a large number of processes and resources

Distributed Deadlock

= Each site only knows about its own resources
= Deadlock may involve distributed resources

= Centralized control — one site is responsible
for deadlock detection

= Hierarchical control — lowest node above the
nodes involved in deadlock

= Distributed control — all processes cooperate
in the deadlock detection function
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Deadlock in Message

= Mutual Waiting

= Deadlock occurs in message
communication when each of a group of
processes is waiting for a message from
another member of the group and there
are no messages in transit
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Figure 14.16 Deadlock in Message Communication

Deadlock in Message

= Unavailability of Message Buffers
= Well known in packet-switching data
networks
= Example: buffer space for A is filled with

packets destined for B. The reverse is true
at B.
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(a) Direct store-and-forward deadlock
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Deadlock in Message
Communication —

Fille with
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= Unavailability of Message Buffers
= For each node, the queue to the adjacent
node in one direction is full with packets
destined for the next node beyond
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(b) Indirect store-and-forward deadlock

Figure 14.17 Store-and-Forward Deadlock
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Figure 14.18 Structured Buffer Pool for Deadlock Prevention
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